3DGS 其二:Street Gaussians for Modeling Dynamic Urban Scenes

2024-01-28 06:28

本文主要是介绍3DGS 其二:Street Gaussians for Modeling Dynamic Urban Scenes,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

3DGS 其二:Street Gaussians for Modeling Dynamic Urban Scenes

  • 1. 背景介绍
    • 1.1 静态场景建模
    • 1.2 动态场景建模
  • 2. 算法
    • 2.1 背景模型
    • 2.2 目标模型
  • 3. 训练
    • 3.1 跟踪优化
  • 4. 下游任务

Reference:

  1. Street Gaussians for Modeling Dynamic Urban Scenes

1. 背景介绍

1.1 静态场景建模

基于场景表达的不同,可以将场景重建分为 volume-basedpoint-based
我感觉这里说的其实是隐式辐射场和显式辐射场更贴切。

  • volume-based:用 MLP 网络表示连续的体积场景,如 Mip-NeRF360、DNMP 等将其应用场景扩展到了城市街景,已去的不错的渲染效果。
  • point-based:在点云上定义学习神经描述符,并使用神经渲染器执行可微分的光栅化,大大可以提高了渲染效率。然而,它们需要密集的点云作为输入,并在点云稀疏区域的结果相对模糊。
  • 3D Gaussian Splatting 在 3D 世界中定义了一组各向异性的高斯核,并执行自适应密度控制,以仅使用稀疏的点云输入实现高质量的渲染结果。可以把 3DGS 理解成介于 volume-based 和 point-based 的中间态,所有同时拥有 volume-based 方法的高质量,也拥有 point-based方法的高效率。然而,3DGS 假定场景是静态的,不能模拟动态移动的对象

1.2 动态场景建模

可以从不同的角度来实现动态场景建模:

  • 目标:在单个对象场景上构建 4D 神经场景表示(比如 HyperReel)。
  • 场景:通过在光流(如 Suds) 或 视觉变换器特征(Emernerf)监督下的实现场景解耦。

然而,这些方法均无法对场景进行编辑,限制了其在自动驾驶仿真中的应用。还有一种方式,使用神经场将场景建模为移动对象模型和背景模型的组合(比如 NSG、Panoptic Neural Fields),然而,它们需要精确的对象轨迹,并且在内存成本和渲染速度上存在问题。

2. 算法

考虑到自动驾驶场景中都是通过车载相机得到图像序列,我们希望构建一个模型,可以生成任意时间和视角的高质量图像。为实现这一目标,我们提出了一种新颖的场景表示,命名为 Street Gaussians

如下图所示,我们将动态城市街景表示为一组点云,每个点云对应静态背景移动车辆----这种基于点的表示可以轻松组合多个独立的模型,实现实时渲染以及解耦前景对象以实现场景编辑。

文中提出的场景表示可以仅使用 RGB 图像进行训练,同时结合车辆位姿优化策略,进一步增强动态前景的表示精度。
在这里插入图片描述

2.1 背景模型

背景模型由一组世界坐标系点组成。每个点都被分配了一个 3D 高斯,来柔和的表示连续的场景几何和颜色。高斯的参数由一个协方差 Σ b \Sigma_b Σb、一个代表了中值的位置向量 μ b ∈ R 3 \mu_b\in\mathbb{R}^3 μbR3、一个透明度值 α b ∈ R 3 \alpha_b\in\mathbb{R}^3 αbR3、一组球谐系数 Z b Z_b Zb 组成。与 3DGS 一文一样,协方差的表示方式也是一个四元数 R b R_b Rb 和三个实数表达的协方差矩阵 S b S_b Sb

为了表示 3D 语义信息,每个点加一个语义对数(概率) β b ∈ R M \beta_b\in\mathbb{R}^M βbRM,其中 M M M 为语义类的个数(所以这里的语义用什么跑出来的,大模型?)。

2.2 目标模型

考虑一个场景内包含 N N N 个移动的前景目标车辆。每个对象都用一组可优化的跟踪车辆姿态和一个点云来表示,点云内的每个点都被分配了一个 3D 高斯、语义对数,和一个动态外观模型。

高斯性质上,目标与背景相似,在透明度 α o \alpha_o αo 和尺度矩阵 S 0 S_0 S0 上的含义相同;而目标的 位置、旋转、外观模型 与背景不同。位置 μ o \mu_o μo 和旋转 R o R_o Ro 是在目标局部坐标系下定义的。要将这些坐标转换到世界坐标系(背景使用的坐标系),这里引入了坐标跟踪位姿的定义。已知有 N t N_t Nt 帧图像,跟踪车辆的位姿的 旋转矩阵与平移向量分别为 { R } t = 1 N t \{\mathbf{R}\}^{N_t}_{t=1} {R}t=1Nt { T t } t = 1 N t \{\mathbf{T_t}\}^{N_t}_{t=1} {Tt}t=1Nt(不是自车,是跟踪车辆相对世界坐标的位姿。文内没说使用的检测网络还是通过什么方式)
μ w = R t μ o + T t , R w = R o R t T , (1) \tag{1} \begin{aligned}&\boldsymbol{\mu}_w=\mathbf{R}_t\boldsymbol{\mu}_o+\mathbf{T}_t,\\&\mathbf{R}_w=\mathbf{R}_o\mathbf{R}_t^T,\end{aligned} μw=Rtμo+Tt,Rw=RoRtT,(1)这样就将目标的高斯转到了世界坐标系。但是,来自现成的跟踪器所追踪到的车辆位姿的噪声是相当大的,为了解决这个问题,文内将跟踪车辆位姿视为可学习的参数,这将在下一节详细描述。

仅使用球谐系数简单表示物体外观不足以模拟移动车辆的外观,如下图所示,因为移动车辆的外观受到其在全局场景中位置的影响。如果使用单独的球谐来表示每个时间的对象,会显著增加存储成本,文内的解决方案是引入了 4D 球谐模型,通过用一组傅里叶变换系数 f ∈ R k f\in\mathbb{R}^k fRk 来替代每一个球谐系数 z m , l z_{m,l} zm,l,当给定任意时间 t t t,可以通过逆傅立叶变换来求出对应的球谐系数 z m , l z_{m,l} zm,l
z m , l = ∑ i = 0 k − 1 f i cos ⁡ ( i π N t t ) . (2) \tag{2} z_{m,l}=\sum_{i=0}^{k-1}\boldsymbol{f}_i\cos\left(\frac{i\pi}{N_t}t\right). zm,l=i=0k1ficos(Ntt).(2)基于这种方式,文内将时间信息编码到外观中,而且不增加额外存储成本。
在这里插入图片描述
对象模型的语义表示与背景模型的语义表示不同。主要区别在于对象模型的语义是一个一维标量 β o \beta_o βo,而不是像背景模型那样是一个 M M M 维向量 β b \beta_b βb。该前景对象车辆模型的语义模型可以看作是一个二分类或置信度预测问题,因为目标只有两个语义类别,即车辆语义类(来自跟踪器)和非车辆。

3. 训练

3.1 跟踪优化

本文2.2节内在渲染期间的位置和协方差矩阵的高斯与在 Eq.1 内跟踪的位姿参数密切相关。然而,通过跟踪模型得到的 bounding-box 噪声太大,直接使用它们来优化文中的场景表示会导致渲染质量下降。因此,文中通过将可学习的变换添加到每个变换矩阵中,将跟踪的姿势视为可学习的参数。具体来说,Eq.1 中的 R t R_t Rt T t T_t Tt 被替换为 R t ′ R'_t Rt T t ′ T'_t Tt,定义为:
R t ′ = R t Δ R t , T t ′ = T t + Δ T t , \begin{aligned}\mathbf{R}_t^{\prime}&=\mathbf{R}_t\Delta\mathbf{R}_t,\\\mathbf{T}_t^{\prime}&=\mathbf{T}_t+\Delta\mathbf{T}_t,\end{aligned} RtTt=RtΔRt,=Tt+ΔTt,其中 Δ R t \Delta R_t ΔRt Δ T t \Delta T_t ΔTt 是可学习的变换。文中使用一三维向量表示 Δ T t \Delta T_t ΔTt,并使用一由 yaw 角偏移角 Δ θ t \Delta \theta_t Δθt 转换的旋转矩阵 Δ R t \Delta R_t ΔRt。这些转换的梯度可以直接在没有任何隐式函数或中间过程的情况下获得,这在反向传播期间不需要任何额外的计算。

4. 下游任务

Street Gaussians 可以被应用到很多下游任务当中,包括场景的前背景解耦、场景的可控编辑、语义分割等。丰富且高质量的下游任务适配,大大提高了 Street Gaussians 的应用上限。

  • 文中模型可以实现场景前背景解耦,细节上相比之前的方法有明显提升:
    在这里插入图片描述

  • 文中模型支持便捷的场景编辑,如下图分别是车辆增加、替换和交换的编辑操作:
    在这里插入图片描述

  • 文中模型还支持拓展到语义分割任务,依靠该建模方式,对于前景目标的分割更加细腻:
    在这里插入图片描述

这篇关于3DGS 其二:Street Gaussians for Modeling Dynamic Urban Scenes的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/652746

相关文章

C# dynamic类型使用详解

《C#dynamic类型使用详解》C#中的dynamic类型允许在运行时确定对象的类型和成员,跳过编译时类型检查,适用于处理未知类型的对象或与动态语言互操作,dynamic支持动态成员解析、添加和删... 目录简介dynamic 的定义dynamic 的使用动态类型赋值访问成员动态方法调用dynamic 的

UML- 统一建模语言(Unified Modeling Language)创建项目的序列图及类图

陈科肇 ============= 1.主要模型 在UML系统开发中有三个主要的模型: 功能模型:从用户的角度展示系统的功能,包括用例图。 对象模型:采用对象、属性、操作、关联等概念展示系统的结构和基础,包括类图、对象图、包图。 动态模型:展现系统的内部行为。 包括序列图、活动图、状态图。 因为要创建个人空间项目并不是一个很大的项目,我这里只须关注两种图的创建就可以了,而在开始创建UML图

论文精读-Supervised Raw Video Denoising with a Benchmark Dataset on Dynamic Scenes

论文精读-Supervised Raw Video Denoising with a Benchmark Dataset on Dynamic Scenes 优势 1、构建了一个用于监督原始视频去噪的基准数据集。为了多次捕捉瞬间,我们手动为对象s创建运动。在高ISO模式下捕获每一时刻的噪声帧,并通过对多个噪声帧进行平均得到相应的干净帧。 2、有效的原始视频去噪网络(RViDeNet),通过探

【硬刚ES】ES基础(十三)Dynamic Template和Index Template

本文是对《【硬刚大数据之学习路线篇】从零到大数据专家的学习指南(全面升级版)》的ES部分补充。

SIM(Search-based user interest modeling)

导读 我们对电商场景兴趣建模的理解愈发清晰:1. 通过预估目标item的信息对用户过去的行为做search提取和item相关的信息是一个很核心有效的技术。2. 更长的用户行为序列信息对CTR建模是非常有效且珍贵的。从用户的角度思考,我们也希望能关注用户长期的兴趣。但是当前的search方法无论是DIN和DIEN都不允许我们在线对一个超长的行为序列比如1000以上做有效搜索。所以我们的目标就比较明

Spark动态资源分配-Dynamic Resource Allocation

关键字:spark、资源分配、dynamic resource allocation Spark中,所谓资源单位一般指的是executors,和Yarn中的Containers一样,在Spark On Yarn模式下,通常使用–num-executors来指定Application使用的executors数量,而–executor-memory和–executor-cores分别用来指定每个ex

TCNN:Modeling and Propagating CNNs in a Tree Structure for Visual Tracking

TCNN:Modeling and Propagating CNNs in a Tree Structure for Visual Tracking arXiv 16 Hyeonseob Nam∗ Mooyeol Baek∗ Bohyung Han 韩国POSTECH大学 Bohyung Han团队的论文,MDNet,BranchOut的作者。 Movtivation 本文的motiv

强化学习实践(二):Dynamic Programming(Value \ Policy Iteration)

强化学习实践(二):Dynamic Programming(Value \ Policy Iteration) 伪代码Value IterationPolicy IterationTruncated Policy Iteration 代码项目地址 伪代码 具体的理解可以看理论学习篇,以及代码中的注释,以及赵老师原著 Value Iteration Policy Itera

【Kubernetes】持久卷的动态供给 Dynamic Provisioning

《持久化存储》系列,共包含以下文章: K8s 持久化存储方式持久卷 PV持久卷声明 PVC持久卷的动态供给 Dynamic Provisioning 😊 如果您觉得这篇文章有用 ✔️ 的话,请给博主一个一键三连 🚀🚀🚀 吧 (点赞 🧡、关注 💛、收藏 💚)!!!您的支持 💖💖💖 将激励 🔥 博主输出更多优质内容!!! 持久卷的动态供给 Dynamic Pr

Design Pattern—— Dynamic Proxy Pattern(三) 动态代理模式

done by myself 通过下面例子,进一步演示 动态代理 的强大特性,将会体会到 相对于静态static代理,动态可实现 一个proxy代理不同的真实对象。灵活多变。只需要在Client类 调整要代理的角色,无需改动其他部分。使代理角色、真实角色的对应关系更松散了。 抽象角色: package com.proxy.severalCase;public interfa