强化学习实践(二):Dynamic Programming(Value \ Policy Iteration)

2024-09-03 03:52

本文主要是介绍强化学习实践(二):Dynamic Programming(Value \ Policy Iteration),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

强化学习实践(二):Dynamic Programming(Value \ Policy Iteration)

  • 伪代码
    • Value Iteration
    • Policy Iteration
    • Truncated Policy Iteration
  • 代码
  • 项目地址

伪代码

具体的理解可以看理论学习篇,以及代码中的注释,以及赵老师原著

Value Iteration

在这里插入图片描述

Policy Iteration

在这里插入图片描述

Truncated Policy Iteration

在这里插入图片描述

代码

import numpy as npfrom environment.env import Env
from environment.vis import Visclass DynamicProgramming:"""动态规划的两个方法, 实际都为Truncated Policy Iteration, 具体代码尽量复刻伪代码的逻辑"""def __init__(self, gamma: float = 0.9, env: Env = None, vis: Vis = None, render: bool = False):self.gamma = gammaself.env = envself.vis = visself.render = renderself.policy = np.zeros(shape=(self.env.state_space_size, self.env.action_space_size), dtype=int)self.qtable = np.zeros(shape=self.env.state_space_size, dtype=float)def value_iteration(self, threshold: float = 0.01) -> None:"""计算每个状态动作对的状态动作价值,然后每个状态选择最大的值对应的动作作为自己的策略,并将值作为自己的状态价值根据Contraction Mapping Theorem, qsa的计算公式满足该理论要求,通过迭代不断优化全局状态价值,并找到对应的最优策略:param threshold: 迭代结束的阈值,前后两次迭代后的全局状态价值的欧氏距离相差小于该阈值时代表优化空间已经不大,结束优化:return: None"""differ = np.infwhile differ > threshold:kth_qtable = self.qtable.copy()for state in self.env.state_space:qsa = np.zeros(shape=self.env.action_space_size, dtype=float)for action in self.env.action_space:qsa[action] = self.calculate_qvalue(state, action)self.policy[state] = np.zeros(shape=self.env.action_space_size)self.policy[state, np.argmax(qsa)] = 1self.qtable[state] = np.max(qsa)differ = np.linalg.norm(kth_qtable - self.qtable, ord=1)if self.render:self.vis.show_policy(self.policy)self.vis.show_value(self.qtable)self.vis.show()def policy_iteration(self, policy_threshold: float = 0.01, value_threshold: float = 0.01, steps: int = 10) -> None:"""step 1:从初始策略开始,求解该策略对应的全局状态价值(在这个过程中本来要无穷次迭代得到真正的状态价值,但实际会设置阈值,截断策略迭代算法)step 2:拿到第K次迭代对应的策略求解出的全局状态价值之后,利用该价值作为初始值,再进行全局状态价值优化以及策略优化这个过程其实相较于值迭代比较难理解Q1:In the policy evaluation step, how to get the state value vπk by solving the Bellman equation?A1:x=f(x)这种满足Contraction Mapping Theorem的迭代求解方式(也可以解析解matrix vector form,但是涉及矩阵逆运算会很慢O(n^3))Q2*:In the policy improvement step, why is the new policy πk+1 better than πk?A2:直观上不是很好理解就得利用数学工具了,赵老师原著Chapter4.P73页对比了前后两次迭代证明了Vπk - Vπk+1 < 0Q3*:Why can this algorithm finally converge to an optimal policy?A3:Chapter4.P75页不仅证明了能达到最优,而且引入这种PE过程会收敛得更快,证明了Vπk>Vk,同一个迭代timing,策略迭代状态价值更接近最优:param policy_threshold: 策略阈值:param value_threshold: 全局状态价值阈值:param steps: 截断的最大迭代次数,只用阈值也行,但这样更方便说明:return: None"""policy_differ = np.infself.init_policy()while policy_differ > policy_threshold:kth_policy = self.policy.copy()# step 1: policy evaluationvalue_differ = np.infwhile value_differ > value_threshold and steps > 0:steps -= 1kth_qtable = self.qtable.copy()for state in self.env.state_space:state_value = 0for action in self.env.action_space:state_value += self.policy[state, action] * self.calculate_qvalue(state, action)self.qtable[state] = state_valuevalue_differ = np.linalg.norm(kth_qtable - self.qtable, ord=1)# step 2: policy improvement 相当于上面的PE给下面提供了一个初始状态(对应策略),之前值迭代的时候是全0为初始值value_differ = np.infwhile value_differ > value_threshold:kth_qtable = self.qtable.copy()for state in self.env.state_space:qsa = np.zeros(shape=self.env.action_space_size, dtype=float)for action in self.env.action_space:qsa[action] = self.calculate_qvalue(state, action)self.policy[state] = np.zeros(shape=self.env.action_space_size)self.policy[state, np.argmax(qsa)] = 1self.qtable[state] = np.max(qsa)value_differ = np.linalg.norm(kth_qtable - self.qtable, ord=1)policy_differ = np.linalg.norm(kth_policy - self.policy, ord=1)if self.render:self.vis.show_policy(self.policy)self.vis.show_value(self.qtable)self.vis.show()def init_policy(self) -> None:"""之前值迭代可以不用初始化,因为只对policy进行了更新,现在策略迭代得初始化,因为首先就要利用policy进行PE:return: None"""random_action = np.random.randint(self.env.action_space_size, size=self.env.state_space_size)for state, action in enumerate(random_action):self.policy[state, action] = 1def calculate_qvalue(self, state: int, action: int) -> float:"""计算状态动作价值函数的元素展开式, 这里就能理解为什么环境模型为什么是这样的数据结构:param state: 当前状态:param action: 当前动作:return: 当前的状态动作价值"""qvalue = 0# immediately reward: sigma(r * p(r | s, a))for reward_type in range(self.env.reward_space_size):qvalue += self.env.reward_space[reward_type] * self.env.rewards_model[state, action, reward_type]# next state expected reward : sigma(vk(s') * p(s' | s, a))for next_state in range(self.env.state_space_size):qvalue += self.gamma * self.env.states_model[state, action, next_state] * self.qtable[next_state]return qvalueif __name__ == "__main__":start_state = [0, 0]target_state = [2, 3]forbid = [[2, 2], [2, 1], [1, 1], [3, 3], [1, 3], [1, 4]]model = DynamicProgramming(vis=Vis(target_state=target_state, forbid=forbid),env=Env(target_state=target_state, forbid=forbid),render=True)model.value_iteration()# model.policy_iteration()

项目地址

RL_Algorithms(正在逐步更新多智能体的算法,STAR HOPE(^ - ^)

这篇关于强化学习实践(二):Dynamic Programming(Value \ Policy Iteration)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1131949

相关文章

SpringBoot中@Value注入静态变量方式

《SpringBoot中@Value注入静态变量方式》SpringBoot中静态变量无法直接用@Value注入,需通过setter方法,@Value(${})从属性文件获取值,@Value(#{})用... 目录项目场景解决方案注解说明1、@Value("${}")使用示例2、@Value("#{}"php

Spring Security简介、使用与最佳实践

《SpringSecurity简介、使用与最佳实践》SpringSecurity是一个能够为基于Spring的企业应用系统提供声明式的安全访问控制解决方案的安全框架,本文给大家介绍SpringSec... 目录一、如何理解 Spring Security?—— 核心思想二、如何在 Java 项目中使用?——

防止Linux rm命令误操作的多场景防护方案与实践

《防止Linuxrm命令误操作的多场景防护方案与实践》在Linux系统中,rm命令是删除文件和目录的高效工具,但一旦误操作,如执行rm-rf/或rm-rf/*,极易导致系统数据灾难,本文针对不同场景... 目录引言理解 rm 命令及误操作风险rm 命令基础常见误操作案例防护方案使用 rm编程 别名及安全删除

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

PHP应用中处理限流和API节流的最佳实践

《PHP应用中处理限流和API节流的最佳实践》限流和API节流对于确保Web应用程序的可靠性、安全性和可扩展性至关重要,本文将详细介绍PHP应用中处理限流和API节流的最佳实践,下面就来和小编一起学习... 目录限流的重要性在 php 中实施限流的最佳实践使用集中式存储进行状态管理(如 Redis)采用滑动

ShardingProxy读写分离之原理、配置与实践过程

《ShardingProxy读写分离之原理、配置与实践过程》ShardingProxy是ApacheShardingSphere的数据库中间件,通过三层架构实现读写分离,解决高并发场景下数据库性能瓶... 目录一、ShardingProxy技术定位与读写分离核心价值1.1 技术定位1.2 读写分离核心价值二

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

MySQL分库分表的实践示例

《MySQL分库分表的实践示例》MySQL分库分表适用于数据量大或并发压力高的场景,核心技术包括水平/垂直分片和分库,需应对分布式事务、跨库查询等挑战,通过中间件和解决方案实现,最佳实践为合理策略、备... 目录一、分库分表的触发条件1.1 数据量阈值1.2 并发压力二、分库分表的核心技术模块2.1 水平分

SpringBoot通过main方法启动web项目实践

《SpringBoot通过main方法启动web项目实践》SpringBoot通过SpringApplication.run()启动Web项目,自动推断应用类型,加载初始化器与监听器,配置Spring... 目录1. 启动入口:SpringApplication.run()2. SpringApplicat

Unity新手入门学习殿堂级知识详细讲解(图文)

《Unity新手入门学习殿堂级知识详细讲解(图文)》Unity是一款跨平台游戏引擎,支持2D/3D及VR/AR开发,核心功能模块包括图形、音频、物理等,通过可视化编辑器与脚本扩展实现开发,项目结构含A... 目录入门概述什么是 UnityUnity引擎基础认知编辑器核心操作Unity 编辑器项目模式分类工程