算法学习系列(二十七):欧拉函数、欧拉定理、费马小定理

2024-01-27 18:36

本文主要是介绍算法学习系列(二十七):欧拉函数、欧拉定理、费马小定理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 引言
  • 一、欧拉函数
    • 1.概念
    • 2.求每个数的欧拉函数
  • 二、线性筛法求欧拉函数
  • 三、欧拉定理,费马小定理

引言

本文主要介绍欧拉函数、线性筛法求欧拉函数,以及公式是怎样推导出来的,并且介绍了欧拉定理,以及费马小定理是怎样被推导出来的。

一、欧拉函数

1.概念

欧拉函数 ϕ ( N ) : 欧拉函数\phi(N): 欧拉函数ϕ(N) 1 ~ N中与N互质的数的个数,(互质:公约数只有1的两个自然数)
N = p 1 α 1 ⋅ p 2 α 2 ⋅ p 3 α 3 ⋅ ⋯ p k α k , ( p i 为质数 ) N = p_{1}^{\alpha_{1}} \cdot p_{2}^{\alpha_{2}} \cdot p_{3}^{\alpha_{3}} \cdot \cdots p_{k}^{\alpha_{k}},(p_{i}为质数) N=p1α1p2α2p3α3pkαk,(pi为质数) ϕ ( N ) = N ⋅ ( 1 − 1 1 − p 1 ) ⋅ ( 1 − 1 1 − p 2 ) ⋯ ( 1 − 1 1 − p k ) \phi(N)=N\cdot(1-\frac{1}{1-p_{1}})\cdot(1-\frac{1}{1-p_{2}})\cdots(1-\frac{1}{1-p_{k}}) ϕ(N)=N(11p11)(11p21)(11pk1)

2.求每个数的欧拉函数

题目描述:

给定 n 个正整数 ai,请你求出每个数的欧拉函数。欧拉函数的定义
1∼N 中与 N 互质的数的个数被称为欧拉函数,记为 ϕ(N)。
若在算数基本定理中,N=pa11pa22…pamm,则:ϕ(N) = N×p1−1p1×p2−1p2×…×pm−1pm输入格式
第一行包含整数 n。
接下来 n 行,每行包含一个正整数 ai。输出格式
输出共 n 行,每行输出一个正整数 ai 的欧拉函数。数据范围
1≤n≤100,1≤ai≤2×109输入样例:
3
3
6
8
输出样例:
2
2
4

示例代码:

#include <cstdio>
#include <iostream>using namespace std;int get_euler(int n)
{int res = n;for(int i = 2; i <= n / i; ++i){if(n % i == 0){res = res / i * (i - 1);  //为避免小数while(n % i == 0) n /= i;}}if(n > 1) res = res / n * (n - 1);return res;
}int main()
{int n;scanf("%d", &n);while(n--){int a;scanf("%d", &a);int res = get_euler(a);printf("%d\n", res);}return 0;
}

二、线性筛法求欧拉函数

当 i 为质数: ϕ ( i ) = i − 1 当i为质数:\phi(i)=i-1 i为质数:ϕ(i)=i1
当 i m o d p r i m e s [ j ] = 0 , 当i \ mod \ primes[j] = 0, i mod primes[j]=0, ϕ ( i ∗ p r i m e s [ j ] ) = i ∗ p r i m e s [ j ] ∗ ( 1 − 1 1 − p 1 ) ∗ ( 1 − 1 1 − p 2 ) ⋯ ( 1 − 1 1 − p k ) = p r i m e s [ j ] ∗ ϕ ( i ) \phi(i*primes[j])= i\ *\ primes[j]\ *\ (1-\frac{1}{1-p_{1}})\ *\ (1-\frac{1}{1-p_{2}})\cdots\ (1-\frac{1}{1-p_{k}}) = primes[j] * \phi(i) ϕ(iprimes[j])=i  primes[j]  (11p11)  (11p21) (11pk1)=primes[j]ϕ(i)
当 i m o d p r i m e s [ j ] ! = 0 , 当i \ mod \ primes[j]\ !=\ 0, i mod primes[j] != 0, ϕ ( i ∗ p r i m e s [ j ] ) = i ∗ p r i m e s [ j ] ∗ ( 1 − 1 1 − p 1 ) ∗ ( 1 − 1 1 − p 2 ) ⋯ ( 1 − 1 1 − p k ) ∗ ( 1 − 1 1 − p r i m e s [ j ] ) = ( p r i m e s [ j ] − 1 ) ∗ ϕ ( i ) \phi(i*primes[j])= i\ *\ primes[j]\ *\ (1-\frac{1}{1-p_{1}})\ *\ (1-\frac{1}{1-p_{2}})\cdots\ (1-\frac{1}{1-p_{k}})\ *\ (1-\frac{1}{1-primes[j]}) = (primes[j]-1)\ *\ \phi(i) ϕ(iprimes[j])=i  primes[j]  (11p11)  (11p21) (11pk1)  (11primes[j]1)=(primes[j]1)  ϕ(i)

题目描述:

给定一个正整数 n,求 1∼n 中每个数的欧拉函数之和。输入格式
共一行,包含一个整数 n。输出格式
共一行,包含一个整数,表示 1∼n 中每个数的欧拉函数之和。数据范围
1≤n≤106输入样例:
6
输出样例:
12

示例代码:

#include <cstdio>
#include <iostream>using namespace std;typedef long long LL;const int N = 1e6+10;int primes[N], cnt;
int phi[N];
bool st[N];LL get_eulers(int n)
{phi[1] = 1;for(int i = 2; i <= n; ++i){if(!st[i]){phi[i] = i - 1;primes[cnt++] = i;}for(int j = 0; primes[j] * i <= n; ++j){st[primes[j] * i] = true;if(i % primes[j] == 0){phi[i * primes[j]] = phi[i] * primes[j];break;}phi[i * primes[j]] = phi[i] * (primes[j] - 1);}}LL res = 0;for(int i = 1; i <= n; ++i) res += phi[i];return res;
}int main()
{int n;scanf("%d", &n);LL res = get_eulers(n);printf("%lld\n", res);return 0;
}

三、欧拉定理,费马小定理

欧拉定理:若 a 与 n 互质,则 a ϕ ( n ) ≡ 1 ( m o d n ) 欧拉定理:若a与n互质,则a^{\phi(n)} \equiv 1 \pmod n 欧拉定理:若an互质,则aϕ(n)1(modn) 费马小定理: a p − 1 ≡ 1 ( m o d p ) (当 p 为质数,则 ϕ ( p ) = p − 1 ) 费马小定理:a^{p-1} \equiv 1 \pmod p(当p为质数,则\phi(p)=p-1) 费马小定理:ap11(modp)(当p为质数,则ϕ(p)=p1

这篇关于算法学习系列(二十七):欧拉函数、欧拉定理、费马小定理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/651131

相关文章

Python itertools中accumulate函数用法及使用运用详细讲解

《Pythonitertools中accumulate函数用法及使用运用详细讲解》:本文主要介绍Python的itertools库中的accumulate函数,该函数可以计算累积和或通过指定函数... 目录1.1前言:1.2定义:1.3衍生用法:1.3Leetcode的实际运用:总结 1.1前言:本文将详

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

轻松上手MYSQL之JSON函数实现高效数据查询与操作

《轻松上手MYSQL之JSON函数实现高效数据查询与操作》:本文主要介绍轻松上手MYSQL之JSON函数实现高效数据查询与操作的相关资料,MySQL提供了多个JSON函数,用于处理和查询JSON数... 目录一、jsON_EXTRACT 提取指定数据二、JSON_UNQUOTE 取消双引号三、JSON_KE

MySQL数据库函数之JSON_EXTRACT示例代码

《MySQL数据库函数之JSON_EXTRACT示例代码》:本文主要介绍MySQL数据库函数之JSON_EXTRACT的相关资料,JSON_EXTRACT()函数用于从JSON文档中提取值,支持对... 目录前言基本语法路径表达式示例示例 1: 提取简单值示例 2: 提取嵌套值示例 3: 提取数组中的值注意

Java function函数式接口的使用方法与实例

《Javafunction函数式接口的使用方法与实例》:本文主要介绍Javafunction函数式接口的使用方法与实例,函数式接口如一支未完成的诗篇,用Lambda表达式作韵脚,将代码的机械美感... 目录引言-当代码遇见诗性一、函数式接口的生物学解构1.1 函数式接口的基因密码1.2 六大核心接口的形态学

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

Oracle的to_date()函数详解

《Oracle的to_date()函数详解》Oracle的to_date()函数用于日期格式转换,需要注意Oracle中不区分大小写的MM和mm格式代码,应使用mi代替分钟,此外,Oracle还支持毫... 目录oracle的to_date()函数一.在使用Oracle的to_date函数来做日期转换二.日

C++11的函数包装器std::function使用示例

《C++11的函数包装器std::function使用示例》C++11引入的std::function是最常用的函数包装器,它可以存储任何可调用对象并提供统一的调用接口,以下是关于函数包装器的详细讲解... 目录一、std::function 的基本用法1. 基本语法二、如何使用 std::function

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用