零一万物开源Yi-VL多模态大模型,推理微调最佳实践来啦!

2024-01-27 17:44

本文主要是介绍零一万物开源Yi-VL多模态大模型,推理微调最佳实践来啦!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

近期,零一万物Yi系列模型家族发布了其多模态大模型系列,**Yi Vision Language(Yi-VL)**多模态语言大模型正式面向全球开源。凭借卓越的图文理解和对话生成能力,Yi-VL模型在英文数据集MMMU和中文数据集CMMMU上取得了领先成绩,展示了在复杂跨学科任务上的强大实力。

基于Yi语言模型的强大文本理解能力,只需对图片进行对齐,就可以得到不错的多模态视觉语言模型——这也是Yi-VL模型的核心亮点之一。

图片

在架构设计上,Yi-VL模型基于开源 LLaVA架构,包含三个主要模块:

  • Vision Transformer(简称ViT) 用于图像编码,使用开源的OpenClip ViT-H/14模型初始化可训练参数,通过学习从大规模"图像-文本"对中提取特征,使模型具备处理和理解图像的能力。

  • Projection模块 为模型带来了图像特征与文本特征空间对齐的能力。该模块由一个包含层归一化(layer normalizations)的多层感知机(Multilayer Perceptron,简称MLP)构成。这一设计使得模型可以更有效地融合和处理视觉和文本信息,提高了多模态理解和生成的准确度。

  • Yi-34B-Chat和Yi-6B-Chat 大规模语言模型的引入为 Yi-VL 提供了强大的语言理解和生成能力。该部分模型借助先进的自然语言处理技术,能够帮助 Yi-VL 深入理解复杂的语言结构,并生成连贯、相关的文本输出。

技术交流群

前沿技术资讯、算法交流、求职内推、算法竞赛、面试交流(校招、社招、实习)等、与 10000+来自港科大、北大、清华、中科院、CMU、腾讯、百度等名校名企开发者互动交流~

我们建了大模型面试与技术交流群, 想要进交流群、需要源码&资料、提升技术的同学,可以直接加微信号:mlc2060。加的时候备注一下:研究方向 +学校/公司+CSDN,即可。然后就可以拉你进群了。

方式①、微信搜索公众号:机器学习社区,后台回复:加群
方式②、添加微信号:mlc2060,备注:技术交流

资料1
在这里插入图片描述

用通俗易懂方式讲解系列

  • 用通俗易懂的方式讲解:自然语言处理初学者指南(附1000页的PPT讲解)
  • 用通俗易懂的方式讲解:NLP 这样学习才是正确路线
  • 用通俗易懂的方式讲解:28张图全解深度学习知识!
  • 用通俗易懂的方式讲解:不用再找了,这就是 NLP 方向最全面试题库
  • 用通俗易懂的方式讲解:实体关系抽取入门教程
  • 用通俗易懂的方式讲解:灵魂 20 问帮你彻底搞定Transformer
  • 用通俗易懂的方式讲解:图解 Transformer 架构
  • 用通俗易懂的方式讲解:大模型算法面经指南(附答案)
  • 用通俗易懂的方式讲解:十分钟部署清华 ChatGLM-6B,实测效果超预期
  • 用通俗易懂的方式讲解:内容讲解+代码案例,轻松掌握大模型应用框架 LangChain
  • 用通俗易懂的方式讲解:如何用大语言模型构建一个知识问答系统
  • 用通俗易懂的方式讲解:最全的大模型 RAG 技术概览
  • 用通俗易懂的方式讲解:利用 LangChain 和 Neo4j 向量索引,构建一个RAG应用程序
  • 用通俗易懂的方式讲解:使用 Neo4j 和 LangChain 集成非结构化知识图增强 QA
  • 用通俗易懂的方式讲解:面了 5 家知名企业的NLP算法岗(大模型方向),被考倒了。。。。。

以下为大家带来推理、微调最佳实践教程。

环境配置与安装

本文使用的模型为Yi-VL-6B模型,可在ModelScope的Notebook的环境(这里以PAI-DSW为例)的配置下运行(显存24G) 。

环境配置与安装

本文主要演示的模型推理代码可在魔搭社区免费实例PAI-DSW的配置下运行(显存24G) :

点击模型右侧Notebook快速开发按钮,选择GPU环境:

图片

打开Terminal环境:

图片

模型链接和下载

Yi系列模型现已在ModelScope社区开源,包括:

Yi-VL-34B模型:

https://modelscope.cn/models/01ai/Yi-VL-34B/summary

Yi-VL-6B模型:

https://modelscope.cn/models/01ai/Yi-VL-6B/summary

社区支持直接下载模型的repo:

from modelscope import snapshot_download
model_dir = snapshot_download("01ai/Yi-VL-6B", revision = "master")

Yi多模态模型推理

安装环境

使用方式参考:https://github.com/01-ai/Yi/tree/main/VL

安装环境

git clone https://github.com/01-ai/Yi.git
cd Yi/VL
export PYTHONPATH=$PYTHONPATH:$(pwd)
pip install -r requirements.txt

模型推理

CUDA_VISIBLE_DEVICES=0 python single_inference.py --model-path /model-path --image-file /mnt/workspace/test.png --question "图里有几只羊?"

选择了几张图,试下效果:

在这里插入图片描述

图片

图片

图片

显存占用情况如下:

图片

Yi系列模型微调和微调后推理

我们使用SWIFT来对模型进行微调, swift是魔搭社区官方提供的LLM&AIGC模型微调推理框架. 微调代码开源地址: https://github.com/modelscope/swift

我们使用数据集coco-mini-en-2进行微调. 任务是: 描述图片中的内容。

环境准备:

git clone https://github.com/modelscope/swift.git
cd swift
pip install .[llm]

微调脚本: LoRA

# https://github.com/modelscope/swift/tree/main/examples/pytorch/llm/scripts/yi_vl_6b_chat
# Experimental environment: V100, A10, 3090
# 18GB GPU memory
CUDA_VISIBLE_DEVICES=0 \
swift sft \--model_type yi-vl-6b-chat \--sft_type lora \--tuner_backend swift \--template_type AUTO \--dtype AUTO \--output_dir output \--dataset coco-mini-en \--train_dataset_sample -1 \--num_train_epochs 1 \--max_length 2048 \--check_dataset_strategy warning \--lora_rank 8 \--lora_alpha 32 \--lora_dropout_p 0.05 \--lora_target_modules DEFAULT \--gradient_checkpointing true \--batch_size 1 \--weight_decay 0.01 \--learning_rate 1e-4 \--gradient_accumulation_steps 16 \--max_grad_norm 0.5 \--warmup_ratio 0.03 \--eval_steps 100 \--save_steps 100 \--save_total_limit 2 \--logging_steps 10 \--use_flash_attn false \

训练过程支持本地数据集,需要指定如下参数:

--custom_train_dataset_path xxx.jsonl \
--custom_val_dataset_path yyy.jsonl \

自定义数据集的格式可以参考:

https://github.com/modelscope/swift/blob/main/docs/source/LLM/自定义与拓展.md#注册数据集的方式

微调后推理脚本: (这里的ckpt_dir需要修改为训练生成的checkpoint文件夹)

# Experimental environment: V100, A10, 3090
CUDA_VISIBLE_DEVICES=0 \
swift infer \--ckpt_dir "output/yi-vl-6b-chat/vx_xxx/checkpoint-xxx" \--load_dataset_config true \--max_length 2048 \--use_flash_attn false \--max_new_tokens 2048 \--temperature 0.5 \--top_p 0.7 \--repetition_penalty 1. \--do_sample true \--merge_lora_and_save false \

训练后生成样例:

图片

[PROMPT]This is a chat between an inquisitive human and an AI assistant. Assume the role of the AI assistant. Read all the images carefully, and respond to the human's questions with informative, helpful, detailed and polite answers. 这是一个好奇的人类和一个人工智能助手之间的对话。假设你扮演这个AI助手的角色。仔细阅读所有的图像,并对人类的问题做出信息丰富、有帮助、详细的和礼貌的回答。### Human: [-100 * 1]
please describe the image.
### Assistant:
[OUTPUT]A large airplane is on display in a museum. 
###[LABELS]People walking in a museum with a airplane hanging from the celing.
[IMAGES]['https://xingchen-data.oss-cn-zhangjiakou.aliyuncs.com/coco/2014/val2014/COCO_val2014_000000492132.jpg']

图片

[PROMPT]This is a chat between an inquisitive human and an AI assistant. Assume the role of the AI assistant. Read all the images carefully, and respond to the human's questions with informative, helpful, detailed and polite answers. 这是一个好奇的人类和一个人工智能助手之间的对话。假设你扮演这个AI助手的角色。仔细阅读所有的图像,并对人类的问题做出信息丰富、有帮助、详细的和礼貌的回答。### Human: [-100 * 1]
please describe the image.
### Assistant:
[OUTPUT]A bowl of fruit and cake next to a cup of coffee. 
###[LABELS]a bowl of fruit and pastry on a table
[IMAGES]['https://xingchen-data.oss-cn-zhangjiakou.aliyuncs.com/coco/2014/val2014/COCO_val2014_000000558642.jpg']

这篇关于零一万物开源Yi-VL多模态大模型,推理微调最佳实践来啦!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/651021

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

阿里开源语音识别SenseVoiceWindows环境部署

SenseVoice介绍 SenseVoice 专注于高精度多语言语音识别、情感辨识和音频事件检测多语言识别: 采用超过 40 万小时数据训练,支持超过 50 种语言,识别效果上优于 Whisper 模型。富文本识别:具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果。支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测。高效推

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

金融业开源技术 术语

金融业开源技术  术语 1  范围 本文件界定了金融业开源技术的常用术语。 本文件适用于金融业中涉及开源技术的相关标准及规范性文件制定和信息沟通等活动。