基于蝗虫优化的KNN分类特征选择算法的matlab仿真

2024-01-25 05:04

本文主要是介绍基于蝗虫优化的KNN分类特征选择算法的matlab仿真,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1.程序功能描述

2.测试软件版本以及运行结果展示

3.核心程序

4.本算法原理

4.1 KNN分类器基本原理

4.2 特征选择的重要性

4.3 蝗虫优化算法(GOA)

5.完整程序


1.程序功能描述

       基于蝗虫优化的KNN分类特征选择算法。使用蝗虫优化算法,选择最佳的特征,进行KNN分类,从而提高KNN分类的精度。

2.测试软件版本以及运行结果展示

MATLAB2022a版本运行

3.核心程序

..........................................................
[idx1,~,idx2]= dividerand(rows,0.8,0,0.2);
Ptrain    = PP(idx1,:);   %training data
Ptest     = PP(idx2,:);     %testing data
Ttrain    = TT(idx1);            %training TT
Ttest     = TT(idx2);              %testing TT
%KNN 
idx_m     = fitcknn(Ptrain,Ttrain,'NumNeighbors',5,'Standardize',1);
Tknn      = predict(idx_m,Ptest);
cp        = classperf(Ttest,Tknn);
err       = cp.ErrorRate;
accuracy1 = cp.CorrectRate;dim=size(PP,2);
lb=0;
ub=1;%GOA优化过程
Pnum      = 50;  %种群个数
iteration = 100; %迭代次数
[~,Target_pos,ybest]= func_GOA(Pnum,iteration,lb,ub,dim,Ptrain,Ptest,Ttrain,Ttest);[~,accuracy2,~]     = func_Eval(Target_pos,Ptrain,Ptest,Ttrain,Ttest);                                                               figure;
plot(ybest);
xlabel('GOA优化迭代过程')
ylabel('适应度值' )figure
bar([accuracy1,accuracy2])
xlabel('1.Predicted by All featrure,  2.Predcited by GOA select featrure')
ylabel('accuracy' )figure
bar([size(Ptest,2),numel(find(Target_pos))])
title('特征选择个数')
xlabel('1.Total Features,    2.Features after GOA Selection');
22   

4.本算法原理

          基于蝗虫优化的KNN(K-最近邻)分类特征选择是一种结合了蝗虫优化算法(Grasshopper Optimization Algorithm, GOA)和KNN分类器的特征选择方法。该方法旨在通过蝗虫优化算法选择最优特征子集,从而提高KNN分类器的分类性能。

4.1 KNN分类器基本原理

       何谓K近邻算法,即K-Nearest Neighbor algorithm,简称KNN算法,单从名字来猜想,可以简单粗暴的认为是:分析一个人时,我们不妨观察和他最亲密的几个人。同理的,在判定一个未知事物时,可以观察离它最近的几个样本,这就是KNN(k最近邻)的方法。简单来说,KNN可以看成:有那么一堆你已经知道分类的数据,然后当一个新数据进入的时候,就开始跟训练数据里的每个点求距离,然后挑出离这个数据最近的K个点,看看这K个点属于什么类型,然后用少数服从多数的原则,给新数据归类。

         KNN分类器是一种基于实例的学习算法,其工作原理是找到一个新数据点在训练数据集中的K个最近邻居,并根据这些邻居的类别来进行投票,从而确定新数据点的类别。

①初始化距离为最大值;
②计算未知样本和每个训练样本的距离dist;
③得到目前K个最临近样本中的最大距离maxdist;
④如果dist小于maxdist,则将该训练样本作为K-最近邻样本;
⑤重复步骤2、3、4.直到所有未知样本和所有训练样本的距离都算完;
⑥统计K-最近邻样本中每个类标号出现的次数;

⑦选择出现频率最大的类标作为未知样本的类标号。

4.2 特征选择的重要性

       在实际应用中,数据集往往包含许多特征,但并不是所有特征都对分类任务有用。冗余和不相关的特征可能会降低分类器的性能,增加计算复杂度。因此,特征选择是一个重要的预处理步骤,它旨在从原始特征集中选择出最有代表性的特征子集。

4.3 蝗虫优化算法(GOA)

        蝗虫优化算法是一种模拟蝗虫群体行为的优化算法。在GOA中,每个蝗虫代表一个解(即一个特征子集),蝗虫的位置通过模拟蝗虫群体的社会交互和自适应行为进行更新。

       在基于蝗虫优化的KNN分类特征选择中,蝗虫的位置代表一个特征子集,适应度函数通常定义为KNN分类器在验证集上的分类准确率。算法的基本步骤如下:

  1. 初始化蝗虫群体的位置(即特征子集)。
  2. 计算每个蝗虫的适应度值(即KNN分类器的分类准确率)。
  3. 根据适应度值更新蝗虫的位置。
  4. 如果满足停止条件(如达到最大迭代次数或解的质量满足要求),则停止算法;否则,转到步骤2。

最终,算法将返回具有最高适应度值的蝗虫的位置,即最优特征子集。

5.完整程序

VVV

这篇关于基于蝗虫优化的KNN分类特征选择算法的matlab仿真的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/642160

相关文章

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

一文详解SpringBoot响应压缩功能的配置与优化

《一文详解SpringBoot响应压缩功能的配置与优化》SpringBoot的响应压缩功能基于智能协商机制,需同时满足很多条件,本文主要为大家详细介绍了SpringBoot响应压缩功能的配置与优化,需... 目录一、核心工作机制1.1 自动协商触发条件1.2 压缩处理流程二、配置方案详解2.1 基础YAML

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

MySQL中慢SQL优化的不同方式介绍

《MySQL中慢SQL优化的不同方式介绍》慢SQL的优化,主要从两个方面考虑,SQL语句本身的优化,以及数据库设计的优化,下面小编就来给大家介绍一下有哪些方式可以优化慢SQL吧... 目录避免不必要的列分页优化索引优化JOIN 的优化排序优化UNION 优化慢 SQL 的优化,主要从两个方面考虑,SQL 语

MySQL中慢SQL优化方法的完整指南

《MySQL中慢SQL优化方法的完整指南》当数据库响应时间超过500ms时,系统将面临三大灾难链式反应,所以本文将为大家介绍一下MySQL中慢SQL优化的常用方法,有需要的小伙伴可以了解下... 目录一、慢SQL的致命影响二、精准定位问题SQL1. 启用慢查询日志2. 诊断黄金三件套三、六大核心优化方案方案

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、