深度强化学习Task3:A2C、A3C算法

2024-01-24 21:04

本文主要是介绍深度强化学习Task3:A2C、A3C算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本篇博客是本人参加Datawhale组队学习第三次任务的笔记
【教程地址】

文章目录

  • Actor-Critic 算法提出的动机
  • Q Actor-Critic 算法
  • A2C 与 A3C 算法
  • 广义优势估计
  • A3C实现
    • 建立Actor和Critic网络
    • 定义智能体
    • 定义环境
    • 训练
    • 利用JoyRL实现多进程
  • 练习
  • 总结

Actor-Critic 算法提出的动机

蒙特卡洛策略梯度算法和基于价值的DQN族算法的优缺点在深度强化学习Task2:策略梯度算法中已经介绍过了。Actor-Critic 算法提出的主要目的是为了:

  1. 结合两类算法的优点
  2. 缓解两种方法都很难解决的高方差问题

策略梯度算法是因为直接对策略参数化,相当于既要利用策略去与环境交互采样,又要利用采样去估计策略梯度
基于价值的算法也是需要与环境交互采样来估计值函数的,因此也会有高方差的问题

Q Actor-Critic 算法

目标函数:类比Q函数, 利用Critic 网络来估计价值。
在这里插入图片描述

Actor-Critic算法的基本通用架构

  • Actor与环境交互采样,然后将采样的轨迹输入Critic网络
  • Critic网络估计出当前状态-动作对的价值
  • 根据价值更新Actor网络的梯度

在这里插入图片描述

A2C 与 A3C 算法

为了进一步缓解高方差问题,A2C中引入一个优势函数 A π ( s t , a t ) A^\pi(s_t,a_t) Aπ(st,at),计算方式如下:
A π ( s t , a t ) = Q π ( s t , a t ) − V π ( s t ) A^\pi(s_t,a_t)=Q^\pi(s_t,a_t)-V^\pi(s_t) Aπ(st,at)=Qπ(st,at)Vπ(st)

优势函数可以理解为在给定状态 s t s_t st下,选择动作 a t a_t at相对于平均水平的优势。如果优势为正,则说明选择这个动作比平均水平要好,反之如果为负则说明选择这个动作比平均水平要差。

将优势函数带入原目标函数中得到的结果如下:
在这里插入图片描述
原先的 A2C 算法相当于只有一个全局网络并持续与环境交互更新。而 A3C算法中增加了多个进程,每一个进程都拥有一个独立的网络和环境以供交互,并且每个进程每隔一段时间都会将自己的参数同步到全局网络中,这样就能提高训练效率。
该算法结合了几个关键思想:

  • 一种更新方案:对固定长度的经验段(比如20个时间步长)进行操作,并使用这些段来计算收益和优势函数的估计值
  • 在策略和价值功能之间共享层的体系结构
  • 异步更新

在这里插入图片描述

通过查阅Open AI的相关博客发现,A2C的同步版本比异步版本(即A3C)要好。当使用单 GPU 机器时,这个 A2C 实现比 A3C 更具成本效益,当使用更大的策略时,它比仅使用 CPU 的 A3C 实现更快。具体内容可以查看:LEARNING TO REINFORCEMENT LEARN

广义优势估计

在介绍广义优势估计之前,我们先回顾一下时序差分蒙特卡洛方法

  • 时序差分方法可以在线学习,每走一步就可以更新,效率高。蒙特卡洛方法必须等游戏结束时才可以学习。
  • 时序差分方法可以从不完整序列上进行学习。蒙特卡洛方法只能从完整的序列上进行学习。
  • 时序差分方法可以在连续的环境下(没有终止)进行学习。蒙特卡洛方法只能在有终止的情况下学习。
  • 时序差分方法利用了马尔可夫性质,在马尔可夫环境下有更高的学习效率。蒙特卡洛方法没有假设环境具有马尔可夫性质,利用采样的价值来估计某个状态的价值,在不是马尔可夫的环境下更加有效。
    在这里插入图片描述
    时序差分能有效解决高方差问题但是是有偏估计,而蒙特卡洛是无偏估计但是会带来高方差问题,因此通常会结合这两个方法形成一种新的估计方式,我们称之为广义优势估计( GAE \text{GAE} GAE)。

A G A E ( γ , λ ) ( s t , a t ) = ∑ l = 0 ∞ ( γ λ ) l δ t + l = ∑ l = 0 ∞ ( γ λ ) l ( r t + l + γ V π ( s t + l + 1 ) − V π ( s t + l ) ) \begin{aligned} A^{\mathrm{GAE}(\gamma, \lambda)}(s_t, a_t) &= \sum_{l=0}^{\infty}(\gamma \lambda)^l \delta_{t+l} \\ &= \sum_{l=0}^{\infty}(\gamma \lambda)^l \left(r_{t+l} + \gamma V^\pi(s_{t+l+1}) - V^\pi(s_{t+l})\right) \end{aligned} AGAE(γ,λ)(st,at)=l=0(γλ)lδt+l=l=0(γλ)l(rt+l+γVπ(st+l+1)Vπ(st+l))

其中 δ t + l \delta_{t+l} δt+l 表示时间步 t + l t+l t+l 时的 TD \text{TD} TD 误差。

δ t + l = r t + l + γ V π ( s t + l + 1 ) − V π ( s t + l ) \begin{aligned} \delta_{t+l} = r_{t+l} + \gamma V^\pi(s_{t+l+1}) - V^\pi(s_{t+l}) \end{aligned} δt+l=rt+l+γVπ(st+l+1)Vπ(st+l)

\qquad λ = 0 \lambda = 0 λ=0 时, GAE \text{GAE} GAE退化为单步 TD \text{TD} TD 误差:

A G A E ( γ , 0 ) ( s t , a t ) = δ t = r t + γ V π ( s t + 1 ) − V π ( s t ) \begin{aligned} A^{\mathrm{GAE}(\gamma, 0)}(s_t, a_t) = \delta_t = r_t + \gamma V^\pi(s_{t+1}) - V^\pi(s_t) \end{aligned} AGAE(γ,0)(st,at)=δt=rt+γVπ(st+1)Vπ(st)

\qquad λ = 1 \lambda = 1 λ=1 时, GAE \text{GAE} GAE 退化为蒙特卡洛估计:

A G A E ( γ , 1 ) ( s t , a t ) = ∑ l = 0 ∞ ( γ λ ) l δ t + l = ∑ l = 0 ∞ ( γ ) l δ t + l \begin{aligned} A^{\mathrm{GAE}(\gamma, 1)}(s_t, a_t) = \sum_{l=0}^{\infty}(\gamma \lambda)^l \delta_{t+l} = \sum_{l=0}^{\infty}(\gamma)^l \delta_{t+l} \end{aligned} AGAE(γ,1)(st,at)=l=0(γλ)lδt+l=l=0(γ)lδt+l

A3C实现

import torch
import os
import random
import seaborn as sns
import gymnasium as gym
import torch.optim as optim
import torch.nn as nn
import torch.nn.functional as F
import matplotlib.pyplot as plt
import numpy as np
from collections import deque
from torch.distributions import Categorical
from multiprocessing import Process, Pipe
from multiprocessing_env import SubprocVecEnv

建立Actor和Critic网络

这里针对简单的环境建立一个ActorCritic网络,并且只针对离散动作空间进行处理,演员和评论家共享参数

class ActorCritic(nn.Module):''' A2C网络模型,包含一个Actor和Critic'''def __init__(self, input_dim, output_dim, hidden_dim):super(ActorCritic, self).__init__()self.critic = nn.Sequential(nn.Linear(input_dim, hidden_dim),nn.ReLU(),nn.Linear(hidden_dim, 1))self.actor = nn.Sequential(nn.Linear(input_dim, hidden_dim),nn.ReLU(),nn.Linear(hidden_dim, output_dim),nn.Softmax(dim=1),)def forward(self, x):value = self.critic(x)probs = self.actor(x)return probs, value # 返回动作概率分布和价值

定义智能体

首先定义一个缓冲区,用于收集模型展开n_steps的轨迹,环境会根据选取的动作返回新的观测状态、奖励等信息,将这些信息存储在缓冲区中,在A3C算法中,等到智能体执行n步动作之后,将所有信息取出来进行之后的计算。

class PGReplay():def __init__(self):self.buffer = deque() # 创建缓冲区def push(self, transitions):self.buffer.append(transitions) # 将收集的信息存放在缓冲区中def sample(self):batch = list(self.buffer)return zip(*batch) # 按数据类别取出def clear(self):self.buffer.clear() # 清空缓冲区

A3C算法实际上是在A2C算法的基础上实现的,算法原理相同。A2C算法的基本原理是在演员-评论家算法的基础上引入优势函数的概念。评论家是一个函数逼近器,输入当前观测到的状态,输出评分值,也就是 Q Q Q值。而 Q Q Q值实际上可以分解为两部分,即 Q ( s , a ) = A ( s , a ) + V ( s ) Q(s,a)=A(s,a)+V(s) Q(s,a)=A(s,a)+V(s)。其中 A ( s , a ) A(s,a) A(s,a)即为优势函数,评价的是在给定状态下当前选定动作相较于其他动作的好坏,它可以通过采样数据计算得出。A2C算法的核心就在于让评论家学习 A ( s , a ) A(s,a) A(s,a)而不再是学习 Q ( s , a ) Q(s,a) Q(s,a)
损失函数一般分为三项,策略梯度损失值残差策略熵正则

  • 策略梯度损失用于不断优化提升reward
  • 值残差用于使critic网络不断逼近真实的reward
  • 策略熵正则能够为了保证action的多样性,增加智能体探索能力。
class A3C:def __init__(self, cfg) -> None:self.gamma = cfg.gammaself.device = cfg.deviceself.model = ActorCritic(cfg.state_dim, cfg.action_dim, cfg.hidden_dim).to(self.device)self.optimizer = optim.Adam(self.model.parameters(), lr = cfg.lr)self.memory = PGReplay()self.critic_loss_coef = cfg.critic_loss_coefself.entropy_coef = cfg.entropy_coefdef compute_returns(self, next_value, rewards, masks):'''计算一个轨迹的累积奖励'''R = next_valuereturns = []for step in reversed(range(len(rewards))):R = rewards[step] + self.gamma * R * masks[step]returns.insert(0, R)return returnsdef sample_action(self,state):'''动作采样函数'''state = torch.tensor(state, device=self.device, dtype=torch.float32)probs, value = self.model(state)dist = Categorical(probs)action = dist.sample() # Tensor([0, 1, 1, 0, ...])return dist, value, action@torch.no_grad()def predict_action(self,state):'''预测动作,与动作采样函数功能相同,只是执行该函数时不需要计算梯度'''state = torch.tensor(state, device=self.device, dtype=torch.float32)probs, value = self.model(state)dist = Categorical(probs)action = dist.sample()return action.detach().cpu().numpy()def update(self, next_state, entropy):log_probs, values, rewards, masks = self.memory.sample() # 从缓冲区中取出信息进行计算next_state = torch.tensor(next_state, dtype = torch.float32).to(self.device) # numpy类型转换为tensor类型_, next_value = self.model(next_state) # shape: torch.Size([n_envs, 1])returns = self.compute_returns(next_value, rewards, masks) # shape: (n_steps, n_envs)log_probs = torch.cat(log_probs) # shape: torch.Size([n_steps * n_envs])returns = torch.cat(returns).detach() # shape: torch.Size([n_steps * n_envs])values = torch.cat(values) # shape: torch.Size([n_steps * n_envs])advantages = returns - values # shape: torch.Size([n_steps * n_envs])actor_loss = - (log_probs * advantages.detach()).mean() # 计算策略梯度损失critic_loss = advantages.pow(2).mean() # 计算值残差loss = actor_loss + self.critic_loss_coef * critic_loss - self.entropy_coef * entropy # 总loss## 梯度更新self.optimizer.zero_grad()loss.backward()self.optimizer.step()self.memory.clear() # 清空缓冲区

定义环境

在定义环境时,分别定义单个环境和多个并行的环境,用于测试和训练。

def make_envs(env_name):'''创建单个环境'''def __thunk():env = gym.make(env_name)return envreturn __thunk
def all_seed(seed = 1):''' 万能的seed函数'''if seed == 0: # 不设置seedreturn np.random.seed(seed)random.seed(seed)torch.manual_seed(seed) # config for CPUtorch.cuda.manual_seed(seed) # config for GPUos.environ['PYTHONHASHSEED'] = str(seed) # config for python scripts# config for cudnntorch.backends.cudnn.deterministic = Truetorch.backends.cudnn.benchmark = Falsetorch.backends.cudnn.enabled = False
def env_agent_config(cfg):env = gym.make(cfg.env_id) # 创建单个环境## 创建多个并行环境envs = [make_envs(cfg.env_id) for i in range(cfg.n_envs)]envs = SubprocVecEnv(envs) all_seed(seed=cfg.seed) # 设置随机种子state_dim = env.observation_space.shape[0] # 获取网络输入维度action_dim = env.action_space.n # 获取策略网络输出维度print(f"状态空间维度:{state_dim},动作空间维度:{action_dim}")setattr(cfg,"state_dim",state_dim) # 更新state_dim到cfg参数中setattr(cfg,"action_dim",action_dim) # 更新action_dim到cfg参数中agent = A3C(cfg) # 创建agent实例return env, envs, agent

训练

在A3C的训练过程中,通过n_envs定义多个环境,构建多个工作进程,所有的工作进程都会在每个相同的时间步上进行环境交互,经过n_steps步的交互之后,将经验收集后一起计算梯度进行模型更新。需要注意的是,这里在多进程的构建上采用的是同步更新的方法,即在每个时间步上使用的是相同的模型和策略进行交互。

def train(cfg, env, envs, agent):''' 训练'''print("开始训练!")rewards = []  # 记录所有回合的奖励steps = [] # 记录所有回合的步数sample_count = 0 # 记录智能体总共走的步数state, info = envs.reset()  # 重置环境,返回初始状态 for i_ep in range(cfg.train_eps):ep_reward = 0  # 记录一条轨迹内的奖励entropy = 0 # 记录一条轨迹内的交叉熵损失for _ in range(cfg.n_steps):dist, value, action = agent.sample_action(state)  # 动作采样sample_count += 1next_state, reward, terminated, truncated , info = envs.step(action.detach().cpu().numpy())  # 更新环境,返回transitionlog_prob = dist.log_prob(action)entropy += dist.entropy().mean()reward = torch.tensor(reward, dtype = torch.float32).unsqueeze(1).to(cfg.device)mask = torch.tensor(1-terminated, dtype = torch.float32).unsqueeze(1).to(cfg.device)agent.memory.push((log_prob,value,reward,mask)) # 将transition存储到缓冲区中state = next_state  # 更新状态agent.update(next_state, entropy) # 更新网络参数if sample_count % 200 == 0:ep_reward = np.mean([evaluate_env(cfg, env, agent) for _ in range(10)])print(f"步数:{sample_count}/{cfg.train_eps*cfg.n_steps},奖励:{ep_reward:.2f}")rewards.append(ep_reward)         print("完成训练!")envs.close()return {'rewards':rewards}
def evaluate_env(cfg, env, agent, vis=False):state, info = env.reset()if vis: env.render()terminated = Falsetotal_reward = 0for _ in range(cfg.max_steps):state = torch.tensor(state, dtype = torch.float32).unsqueeze(0).to(cfg.device)action = agent.predict_action(state)next_state, reward, terminated, truncated, _ = env.step(action[0])state = next_stateif vis: env.render()total_reward += rewardif terminated:breakreturn total_reward
def test(cfg, env, agent):print("开始测试!")rewards = []  # 记录所有回合的奖励steps = [] # 记录所有回合的步数for i_ep in range(cfg.test_eps):ep_reward = 0  # 记录一回合内的奖励ep_step = 0 # 记录一回合智能体一共走的步数state, info = env.reset(seed = cfg.seed)  # 重置环境,返回初始状态for _ in range(cfg.max_steps):ep_step+=1state = torch.tensor(state, dtype = torch.float32).unsqueeze(0).to(cfg.device) action = agent.predict_action(state)  # 选择动作next_state, reward, terminated, truncated , info = env.step(action[0])  # 更新环境,返回transitionstate = next_state  # 更新下一个状态ep_reward += reward  # 累加奖励if terminated:breaksteps.append(ep_step)rewards.append(ep_reward)print(f"回合:{i_ep+1}/{cfg.test_eps},奖励:{ep_reward:.2f}")print("完成测试")env.close()return {'rewards':rewards}

设置参数

class Config:def __init__(self) -> None:self.algo_name = 'A3C' # 算法名称self.env_id = 'CartPole-v1' # 环境idself.seed = 1 # 随机种子,便于复现,0表示不设置self.train_eps = 4000 # 训练的总步数self.test_eps = 200 # 测试的总回合数self.n_steps = 5 # 更新策略的轨迹长度self.max_steps = 200 # 测试时一个回合中能走的最大步数self.gamma = 0.99 # 折扣因子self.lr= 1e-3 # 网络学习率self.critic_loss_coef = 0.5 # 值函数系数值self.entropy_coef = 0.001 # 策略熵系数值self.hidden_dim = 256 # 网络的隐藏层维度self.n_envs = 8 # 并行的环境个数self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测gpudef smooth(data, weight=0.9):  '''用于平滑曲线,类似于Tensorboard中的smooth曲线'''last = data[0] smoothed = []for point in data:smoothed_val = last * weight + (1 - weight) * point  # 计算平滑值smoothed.append(smoothed_val)                    last = smoothed_val                                return smootheddef plot_rewards(rewards,cfg, tag='train'):''' 画图'''sns.set()plt.figure()  # 创建一个图形实例,方便同时多画几个图plt.title(f"{tag}ing curve on {cfg.device} of {cfg.algo_name} for {cfg.env_id}")plt.xlabel('epsiodes')plt.plot(rewards, label='rewards')plt.plot(smooth(rewards), label='smoothed')plt.legend()plt.show()

开始训练

# 获取参数
cfg = Config() 
# 训练
env, envs, agent = env_agent_config(cfg)
res_dic = train(cfg, env, envs, agent)
plot_rewards(res_dic['rewards'], cfg, tag="train")  
# 测试
res_dic = test(cfg, env, agent)
plot_rewards(res_dic['rewards'], cfg, tag="test")  # 画出结果

在这里插入图片描述
查看GPU运行状况发现确实是采用了多个进程。

利用JoyRL实现多进程

JoyRL 支持多进程模式,但与矢量化环境不同,JoyRL 的多进程模式可以同时运行多个交互器和学习者。这样做的好处是,如果一个交互者或学习者失败,它不会影响其他交互者或学习者的运行,从而提高训练的稳定性。在 JoyRL 中,多进程模式可以通过将 n _ intertorsn _ learning 设置为大于1的整数来启动,如下所示:

n_interactors: 2
n_learners: 2

请注意,多学习者模式还不支持,即 n _ learning 必须设置为1,多学习者模式将在未来得到支持。

练习

  1. 相比于 REINFORCE \text{REINFORCE} REINFORCE 算法, A2C \text{A2C} A2C 主要的改进点在哪里,为什么能提高速度?
  • 改进点主要有:优势估计:可以更好地区分好的动作和坏的动作,同时减小优化中的方差,从而提高了梯度的精确性,使得策略更新更有效率
  • 使用 Critic \text{Critic} Critic REINFORCE \text{REINFORCE} REINFORCE 通常只使用 Actor \text{Actor} Actor 网络,没有 Critic \text{Critic} Critic 来辅助估计动作的价值,效率更低
  • 并行化:即 A3C \text{A3C} A3C ,允许在不同的环境中并行运行多个 Agent \text{Agent} Agent,每个 Agent \text{Agent} Agent 收集数据并进行策略更新,这样训练速度也会更快。
  1. A2C \text{A2C} A2C 算法是 on-policy \text{on-policy} on-policy 的吗?为什么?

A2C \text{A2C} A2C 在原理上是一个 on-policy \text{on-policy} on-policy算法,首先它使用当前策略的样本数据来更新策略,然后它的优势估计也依赖于当前策略的动作价值估计,并且使用的也是策略梯度方法进行更新,因此是 on-policy \text{on-policy} on-policy 的。但它可以被扩展为支持 off-policy \text{off-policy} off-policy学习,比如引入经验回放,但注意这可能需要更多的调整,以确保算法的稳定性和性能。

总结

本文首先从蒙特卡洛策略梯度算法和基于价值的DQN族算法的缺陷进行切入,引出了Actor-Critic 算法。该算法主要是对Critic 部分进行了改进,在Q Actor-Critic 算法提出的通用框架下,引入一个优势函数,即A2C算法。原先的 A2C算法相当于只有一个全局网络并持续与环境交互更新,而A3C算法中增加了多个进程,使每一个进程都拥有一个独立的网络和环境以供交互,并且每个进程每隔一段时间都会将自己的参数同步到全局网络中,提高了训练效率。之后介绍了广义优势估计着一种通用的模块,它在实践中可以用在任何需要估计优势函数的地方。最后对A2C算法进行了实现,并介绍了JoyRL包实现多进程的方法。

这篇关于深度强化学习Task3:A2C、A3C算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/640992

相关文章

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

最新Spring Security实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)

《最新SpringSecurity实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)》本章节介绍了如何通过SpringSecurity实现从配置自定义登录页面、表单登录处理逻辑的配置,并简单模拟... 目录前言改造准备开始登录页改造自定义用户名密码登陆成功失败跳转问题自定义登出前后端分离适配方案结语前言

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

Redis 内存淘汰策略深度解析(最新推荐)

《Redis内存淘汰策略深度解析(最新推荐)》本文详细探讨了Redis的内存淘汰策略、实现原理、适用场景及最佳实践,介绍了八种内存淘汰策略,包括noeviction、LRU、LFU、TTL、Rand... 目录一、 内存淘汰策略概述二、内存淘汰策略详解2.1 ​noeviction(不淘汰)​2.2 ​LR