深度强化学习Task3:A2C、A3C算法

2024-01-24 21:04

本文主要是介绍深度强化学习Task3:A2C、A3C算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本篇博客是本人参加Datawhale组队学习第三次任务的笔记
【教程地址】

文章目录

  • Actor-Critic 算法提出的动机
  • Q Actor-Critic 算法
  • A2C 与 A3C 算法
  • 广义优势估计
  • A3C实现
    • 建立Actor和Critic网络
    • 定义智能体
    • 定义环境
    • 训练
    • 利用JoyRL实现多进程
  • 练习
  • 总结

Actor-Critic 算法提出的动机

蒙特卡洛策略梯度算法和基于价值的DQN族算法的优缺点在深度强化学习Task2:策略梯度算法中已经介绍过了。Actor-Critic 算法提出的主要目的是为了:

  1. 结合两类算法的优点
  2. 缓解两种方法都很难解决的高方差问题

策略梯度算法是因为直接对策略参数化,相当于既要利用策略去与环境交互采样,又要利用采样去估计策略梯度
基于价值的算法也是需要与环境交互采样来估计值函数的,因此也会有高方差的问题

Q Actor-Critic 算法

目标函数:类比Q函数, 利用Critic 网络来估计价值。
在这里插入图片描述

Actor-Critic算法的基本通用架构

  • Actor与环境交互采样,然后将采样的轨迹输入Critic网络
  • Critic网络估计出当前状态-动作对的价值
  • 根据价值更新Actor网络的梯度

在这里插入图片描述

A2C 与 A3C 算法

为了进一步缓解高方差问题,A2C中引入一个优势函数 A π ( s t , a t ) A^\pi(s_t,a_t) Aπ(st,at),计算方式如下:
A π ( s t , a t ) = Q π ( s t , a t ) − V π ( s t ) A^\pi(s_t,a_t)=Q^\pi(s_t,a_t)-V^\pi(s_t) Aπ(st,at)=Qπ(st,at)Vπ(st)

优势函数可以理解为在给定状态 s t s_t st下,选择动作 a t a_t at相对于平均水平的优势。如果优势为正,则说明选择这个动作比平均水平要好,反之如果为负则说明选择这个动作比平均水平要差。

将优势函数带入原目标函数中得到的结果如下:
在这里插入图片描述
原先的 A2C 算法相当于只有一个全局网络并持续与环境交互更新。而 A3C算法中增加了多个进程,每一个进程都拥有一个独立的网络和环境以供交互,并且每个进程每隔一段时间都会将自己的参数同步到全局网络中,这样就能提高训练效率。
该算法结合了几个关键思想:

  • 一种更新方案:对固定长度的经验段(比如20个时间步长)进行操作,并使用这些段来计算收益和优势函数的估计值
  • 在策略和价值功能之间共享层的体系结构
  • 异步更新

在这里插入图片描述

通过查阅Open AI的相关博客发现,A2C的同步版本比异步版本(即A3C)要好。当使用单 GPU 机器时,这个 A2C 实现比 A3C 更具成本效益,当使用更大的策略时,它比仅使用 CPU 的 A3C 实现更快。具体内容可以查看:LEARNING TO REINFORCEMENT LEARN

广义优势估计

在介绍广义优势估计之前,我们先回顾一下时序差分蒙特卡洛方法

  • 时序差分方法可以在线学习,每走一步就可以更新,效率高。蒙特卡洛方法必须等游戏结束时才可以学习。
  • 时序差分方法可以从不完整序列上进行学习。蒙特卡洛方法只能从完整的序列上进行学习。
  • 时序差分方法可以在连续的环境下(没有终止)进行学习。蒙特卡洛方法只能在有终止的情况下学习。
  • 时序差分方法利用了马尔可夫性质,在马尔可夫环境下有更高的学习效率。蒙特卡洛方法没有假设环境具有马尔可夫性质,利用采样的价值来估计某个状态的价值,在不是马尔可夫的环境下更加有效。
    在这里插入图片描述
    时序差分能有效解决高方差问题但是是有偏估计,而蒙特卡洛是无偏估计但是会带来高方差问题,因此通常会结合这两个方法形成一种新的估计方式,我们称之为广义优势估计( GAE \text{GAE} GAE)。

A G A E ( γ , λ ) ( s t , a t ) = ∑ l = 0 ∞ ( γ λ ) l δ t + l = ∑ l = 0 ∞ ( γ λ ) l ( r t + l + γ V π ( s t + l + 1 ) − V π ( s t + l ) ) \begin{aligned} A^{\mathrm{GAE}(\gamma, \lambda)}(s_t, a_t) &= \sum_{l=0}^{\infty}(\gamma \lambda)^l \delta_{t+l} \\ &= \sum_{l=0}^{\infty}(\gamma \lambda)^l \left(r_{t+l} + \gamma V^\pi(s_{t+l+1}) - V^\pi(s_{t+l})\right) \end{aligned} AGAE(γ,λ)(st,at)=l=0(γλ)lδt+l=l=0(γλ)l(rt+l+γVπ(st+l+1)Vπ(st+l))

其中 δ t + l \delta_{t+l} δt+l 表示时间步 t + l t+l t+l 时的 TD \text{TD} TD 误差。

δ t + l = r t + l + γ V π ( s t + l + 1 ) − V π ( s t + l ) \begin{aligned} \delta_{t+l} = r_{t+l} + \gamma V^\pi(s_{t+l+1}) - V^\pi(s_{t+l}) \end{aligned} δt+l=rt+l+γVπ(st+l+1)Vπ(st+l)

\qquad λ = 0 \lambda = 0 λ=0 时, GAE \text{GAE} GAE退化为单步 TD \text{TD} TD 误差:

A G A E ( γ , 0 ) ( s t , a t ) = δ t = r t + γ V π ( s t + 1 ) − V π ( s t ) \begin{aligned} A^{\mathrm{GAE}(\gamma, 0)}(s_t, a_t) = \delta_t = r_t + \gamma V^\pi(s_{t+1}) - V^\pi(s_t) \end{aligned} AGAE(γ,0)(st,at)=δt=rt+γVπ(st+1)Vπ(st)

\qquad λ = 1 \lambda = 1 λ=1 时, GAE \text{GAE} GAE 退化为蒙特卡洛估计:

A G A E ( γ , 1 ) ( s t , a t ) = ∑ l = 0 ∞ ( γ λ ) l δ t + l = ∑ l = 0 ∞ ( γ ) l δ t + l \begin{aligned} A^{\mathrm{GAE}(\gamma, 1)}(s_t, a_t) = \sum_{l=0}^{\infty}(\gamma \lambda)^l \delta_{t+l} = \sum_{l=0}^{\infty}(\gamma)^l \delta_{t+l} \end{aligned} AGAE(γ,1)(st,at)=l=0(γλ)lδt+l=l=0(γ)lδt+l

A3C实现

import torch
import os
import random
import seaborn as sns
import gymnasium as gym
import torch.optim as optim
import torch.nn as nn
import torch.nn.functional as F
import matplotlib.pyplot as plt
import numpy as np
from collections import deque
from torch.distributions import Categorical
from multiprocessing import Process, Pipe
from multiprocessing_env import SubprocVecEnv

建立Actor和Critic网络

这里针对简单的环境建立一个ActorCritic网络,并且只针对离散动作空间进行处理,演员和评论家共享参数

class ActorCritic(nn.Module):''' A2C网络模型,包含一个Actor和Critic'''def __init__(self, input_dim, output_dim, hidden_dim):super(ActorCritic, self).__init__()self.critic = nn.Sequential(nn.Linear(input_dim, hidden_dim),nn.ReLU(),nn.Linear(hidden_dim, 1))self.actor = nn.Sequential(nn.Linear(input_dim, hidden_dim),nn.ReLU(),nn.Linear(hidden_dim, output_dim),nn.Softmax(dim=1),)def forward(self, x):value = self.critic(x)probs = self.actor(x)return probs, value # 返回动作概率分布和价值

定义智能体

首先定义一个缓冲区,用于收集模型展开n_steps的轨迹,环境会根据选取的动作返回新的观测状态、奖励等信息,将这些信息存储在缓冲区中,在A3C算法中,等到智能体执行n步动作之后,将所有信息取出来进行之后的计算。

class PGReplay():def __init__(self):self.buffer = deque() # 创建缓冲区def push(self, transitions):self.buffer.append(transitions) # 将收集的信息存放在缓冲区中def sample(self):batch = list(self.buffer)return zip(*batch) # 按数据类别取出def clear(self):self.buffer.clear() # 清空缓冲区

A3C算法实际上是在A2C算法的基础上实现的,算法原理相同。A2C算法的基本原理是在演员-评论家算法的基础上引入优势函数的概念。评论家是一个函数逼近器,输入当前观测到的状态,输出评分值,也就是 Q Q Q值。而 Q Q Q值实际上可以分解为两部分,即 Q ( s , a ) = A ( s , a ) + V ( s ) Q(s,a)=A(s,a)+V(s) Q(s,a)=A(s,a)+V(s)。其中 A ( s , a ) A(s,a) A(s,a)即为优势函数,评价的是在给定状态下当前选定动作相较于其他动作的好坏,它可以通过采样数据计算得出。A2C算法的核心就在于让评论家学习 A ( s , a ) A(s,a) A(s,a)而不再是学习 Q ( s , a ) Q(s,a) Q(s,a)
损失函数一般分为三项,策略梯度损失值残差策略熵正则

  • 策略梯度损失用于不断优化提升reward
  • 值残差用于使critic网络不断逼近真实的reward
  • 策略熵正则能够为了保证action的多样性,增加智能体探索能力。
class A3C:def __init__(self, cfg) -> None:self.gamma = cfg.gammaself.device = cfg.deviceself.model = ActorCritic(cfg.state_dim, cfg.action_dim, cfg.hidden_dim).to(self.device)self.optimizer = optim.Adam(self.model.parameters(), lr = cfg.lr)self.memory = PGReplay()self.critic_loss_coef = cfg.critic_loss_coefself.entropy_coef = cfg.entropy_coefdef compute_returns(self, next_value, rewards, masks):'''计算一个轨迹的累积奖励'''R = next_valuereturns = []for step in reversed(range(len(rewards))):R = rewards[step] + self.gamma * R * masks[step]returns.insert(0, R)return returnsdef sample_action(self,state):'''动作采样函数'''state = torch.tensor(state, device=self.device, dtype=torch.float32)probs, value = self.model(state)dist = Categorical(probs)action = dist.sample() # Tensor([0, 1, 1, 0, ...])return dist, value, action@torch.no_grad()def predict_action(self,state):'''预测动作,与动作采样函数功能相同,只是执行该函数时不需要计算梯度'''state = torch.tensor(state, device=self.device, dtype=torch.float32)probs, value = self.model(state)dist = Categorical(probs)action = dist.sample()return action.detach().cpu().numpy()def update(self, next_state, entropy):log_probs, values, rewards, masks = self.memory.sample() # 从缓冲区中取出信息进行计算next_state = torch.tensor(next_state, dtype = torch.float32).to(self.device) # numpy类型转换为tensor类型_, next_value = self.model(next_state) # shape: torch.Size([n_envs, 1])returns = self.compute_returns(next_value, rewards, masks) # shape: (n_steps, n_envs)log_probs = torch.cat(log_probs) # shape: torch.Size([n_steps * n_envs])returns = torch.cat(returns).detach() # shape: torch.Size([n_steps * n_envs])values = torch.cat(values) # shape: torch.Size([n_steps * n_envs])advantages = returns - values # shape: torch.Size([n_steps * n_envs])actor_loss = - (log_probs * advantages.detach()).mean() # 计算策略梯度损失critic_loss = advantages.pow(2).mean() # 计算值残差loss = actor_loss + self.critic_loss_coef * critic_loss - self.entropy_coef * entropy # 总loss## 梯度更新self.optimizer.zero_grad()loss.backward()self.optimizer.step()self.memory.clear() # 清空缓冲区

定义环境

在定义环境时,分别定义单个环境和多个并行的环境,用于测试和训练。

def make_envs(env_name):'''创建单个环境'''def __thunk():env = gym.make(env_name)return envreturn __thunk
def all_seed(seed = 1):''' 万能的seed函数'''if seed == 0: # 不设置seedreturn np.random.seed(seed)random.seed(seed)torch.manual_seed(seed) # config for CPUtorch.cuda.manual_seed(seed) # config for GPUos.environ['PYTHONHASHSEED'] = str(seed) # config for python scripts# config for cudnntorch.backends.cudnn.deterministic = Truetorch.backends.cudnn.benchmark = Falsetorch.backends.cudnn.enabled = False
def env_agent_config(cfg):env = gym.make(cfg.env_id) # 创建单个环境## 创建多个并行环境envs = [make_envs(cfg.env_id) for i in range(cfg.n_envs)]envs = SubprocVecEnv(envs) all_seed(seed=cfg.seed) # 设置随机种子state_dim = env.observation_space.shape[0] # 获取网络输入维度action_dim = env.action_space.n # 获取策略网络输出维度print(f"状态空间维度:{state_dim},动作空间维度:{action_dim}")setattr(cfg,"state_dim",state_dim) # 更新state_dim到cfg参数中setattr(cfg,"action_dim",action_dim) # 更新action_dim到cfg参数中agent = A3C(cfg) # 创建agent实例return env, envs, agent

训练

在A3C的训练过程中,通过n_envs定义多个环境,构建多个工作进程,所有的工作进程都会在每个相同的时间步上进行环境交互,经过n_steps步的交互之后,将经验收集后一起计算梯度进行模型更新。需要注意的是,这里在多进程的构建上采用的是同步更新的方法,即在每个时间步上使用的是相同的模型和策略进行交互。

def train(cfg, env, envs, agent):''' 训练'''print("开始训练!")rewards = []  # 记录所有回合的奖励steps = [] # 记录所有回合的步数sample_count = 0 # 记录智能体总共走的步数state, info = envs.reset()  # 重置环境,返回初始状态 for i_ep in range(cfg.train_eps):ep_reward = 0  # 记录一条轨迹内的奖励entropy = 0 # 记录一条轨迹内的交叉熵损失for _ in range(cfg.n_steps):dist, value, action = agent.sample_action(state)  # 动作采样sample_count += 1next_state, reward, terminated, truncated , info = envs.step(action.detach().cpu().numpy())  # 更新环境,返回transitionlog_prob = dist.log_prob(action)entropy += dist.entropy().mean()reward = torch.tensor(reward, dtype = torch.float32).unsqueeze(1).to(cfg.device)mask = torch.tensor(1-terminated, dtype = torch.float32).unsqueeze(1).to(cfg.device)agent.memory.push((log_prob,value,reward,mask)) # 将transition存储到缓冲区中state = next_state  # 更新状态agent.update(next_state, entropy) # 更新网络参数if sample_count % 200 == 0:ep_reward = np.mean([evaluate_env(cfg, env, agent) for _ in range(10)])print(f"步数:{sample_count}/{cfg.train_eps*cfg.n_steps},奖励:{ep_reward:.2f}")rewards.append(ep_reward)         print("完成训练!")envs.close()return {'rewards':rewards}
def evaluate_env(cfg, env, agent, vis=False):state, info = env.reset()if vis: env.render()terminated = Falsetotal_reward = 0for _ in range(cfg.max_steps):state = torch.tensor(state, dtype = torch.float32).unsqueeze(0).to(cfg.device)action = agent.predict_action(state)next_state, reward, terminated, truncated, _ = env.step(action[0])state = next_stateif vis: env.render()total_reward += rewardif terminated:breakreturn total_reward
def test(cfg, env, agent):print("开始测试!")rewards = []  # 记录所有回合的奖励steps = [] # 记录所有回合的步数for i_ep in range(cfg.test_eps):ep_reward = 0  # 记录一回合内的奖励ep_step = 0 # 记录一回合智能体一共走的步数state, info = env.reset(seed = cfg.seed)  # 重置环境,返回初始状态for _ in range(cfg.max_steps):ep_step+=1state = torch.tensor(state, dtype = torch.float32).unsqueeze(0).to(cfg.device) action = agent.predict_action(state)  # 选择动作next_state, reward, terminated, truncated , info = env.step(action[0])  # 更新环境,返回transitionstate = next_state  # 更新下一个状态ep_reward += reward  # 累加奖励if terminated:breaksteps.append(ep_step)rewards.append(ep_reward)print(f"回合:{i_ep+1}/{cfg.test_eps},奖励:{ep_reward:.2f}")print("完成测试")env.close()return {'rewards':rewards}

设置参数

class Config:def __init__(self) -> None:self.algo_name = 'A3C' # 算法名称self.env_id = 'CartPole-v1' # 环境idself.seed = 1 # 随机种子,便于复现,0表示不设置self.train_eps = 4000 # 训练的总步数self.test_eps = 200 # 测试的总回合数self.n_steps = 5 # 更新策略的轨迹长度self.max_steps = 200 # 测试时一个回合中能走的最大步数self.gamma = 0.99 # 折扣因子self.lr= 1e-3 # 网络学习率self.critic_loss_coef = 0.5 # 值函数系数值self.entropy_coef = 0.001 # 策略熵系数值self.hidden_dim = 256 # 网络的隐藏层维度self.n_envs = 8 # 并行的环境个数self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测gpudef smooth(data, weight=0.9):  '''用于平滑曲线,类似于Tensorboard中的smooth曲线'''last = data[0] smoothed = []for point in data:smoothed_val = last * weight + (1 - weight) * point  # 计算平滑值smoothed.append(smoothed_val)                    last = smoothed_val                                return smootheddef plot_rewards(rewards,cfg, tag='train'):''' 画图'''sns.set()plt.figure()  # 创建一个图形实例,方便同时多画几个图plt.title(f"{tag}ing curve on {cfg.device} of {cfg.algo_name} for {cfg.env_id}")plt.xlabel('epsiodes')plt.plot(rewards, label='rewards')plt.plot(smooth(rewards), label='smoothed')plt.legend()plt.show()

开始训练

# 获取参数
cfg = Config() 
# 训练
env, envs, agent = env_agent_config(cfg)
res_dic = train(cfg, env, envs, agent)
plot_rewards(res_dic['rewards'], cfg, tag="train")  
# 测试
res_dic = test(cfg, env, agent)
plot_rewards(res_dic['rewards'], cfg, tag="test")  # 画出结果

在这里插入图片描述
查看GPU运行状况发现确实是采用了多个进程。

利用JoyRL实现多进程

JoyRL 支持多进程模式,但与矢量化环境不同,JoyRL 的多进程模式可以同时运行多个交互器和学习者。这样做的好处是,如果一个交互者或学习者失败,它不会影响其他交互者或学习者的运行,从而提高训练的稳定性。在 JoyRL 中,多进程模式可以通过将 n _ intertorsn _ learning 设置为大于1的整数来启动,如下所示:

n_interactors: 2
n_learners: 2

请注意,多学习者模式还不支持,即 n _ learning 必须设置为1,多学习者模式将在未来得到支持。

练习

  1. 相比于 REINFORCE \text{REINFORCE} REINFORCE 算法, A2C \text{A2C} A2C 主要的改进点在哪里,为什么能提高速度?
  • 改进点主要有:优势估计:可以更好地区分好的动作和坏的动作,同时减小优化中的方差,从而提高了梯度的精确性,使得策略更新更有效率
  • 使用 Critic \text{Critic} Critic REINFORCE \text{REINFORCE} REINFORCE 通常只使用 Actor \text{Actor} Actor 网络,没有 Critic \text{Critic} Critic 来辅助估计动作的价值,效率更低
  • 并行化:即 A3C \text{A3C} A3C ,允许在不同的环境中并行运行多个 Agent \text{Agent} Agent,每个 Agent \text{Agent} Agent 收集数据并进行策略更新,这样训练速度也会更快。
  1. A2C \text{A2C} A2C 算法是 on-policy \text{on-policy} on-policy 的吗?为什么?

A2C \text{A2C} A2C 在原理上是一个 on-policy \text{on-policy} on-policy算法,首先它使用当前策略的样本数据来更新策略,然后它的优势估计也依赖于当前策略的动作价值估计,并且使用的也是策略梯度方法进行更新,因此是 on-policy \text{on-policy} on-policy 的。但它可以被扩展为支持 off-policy \text{off-policy} off-policy学习,比如引入经验回放,但注意这可能需要更多的调整,以确保算法的稳定性和性能。

总结

本文首先从蒙特卡洛策略梯度算法和基于价值的DQN族算法的缺陷进行切入,引出了Actor-Critic 算法。该算法主要是对Critic 部分进行了改进,在Q Actor-Critic 算法提出的通用框架下,引入一个优势函数,即A2C算法。原先的 A2C算法相当于只有一个全局网络并持续与环境交互更新,而A3C算法中增加了多个进程,使每一个进程都拥有一个独立的网络和环境以供交互,并且每个进程每隔一段时间都会将自己的参数同步到全局网络中,提高了训练效率。之后介绍了广义优势估计着一种通用的模块,它在实践中可以用在任何需要估计优势函数的地方。最后对A2C算法进行了实现,并介绍了JoyRL包实现多进程的方法。

这篇关于深度强化学习Task3:A2C、A3C算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/640992

相关文章

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

Go中sync.Once源码的深度讲解

《Go中sync.Once源码的深度讲解》sync.Once是Go语言标准库中的一个同步原语,用于确保某个操作只执行一次,本文将从源码出发为大家详细介绍一下sync.Once的具体使用,x希望对大家有... 目录概念简单示例源码解读总结概念sync.Once是Go语言标准库中的一个同步原语,用于确保某个操

五大特性引领创新! 深度操作系统 deepin 25 Preview预览版发布

《五大特性引领创新!深度操作系统deepin25Preview预览版发布》今日,深度操作系统正式推出deepin25Preview版本,该版本集成了五大核心特性:磐石系统、全新DDE、Tr... 深度操作系统今日发布了 deepin 25 Preview,新版本囊括五大特性:磐石系统、全新 DDE、Tree

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06