【深度学习每日小知识】Co-occurrence matrix 共现矩阵

2024-01-24 14:04

本文主要是介绍【深度学习每日小知识】Co-occurrence matrix 共现矩阵,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

共生矩阵或共生分布(也称为:灰度共生矩阵 GLCM)是在图像上定义为共生像素值(灰度值或颜色)分布的矩阵)在给定的偏移量处。它被用作纹理分析的方法,具有多种应用,特别是在医学图像分析中。

方法

给定灰度图像 ,共生矩阵计算具有特定值和偏移量的像素对在图像中出现的频率。

  • 偏移量 ( Δ x , Δ y ) (\Delta x, \Delta y) (Δx,Δy) 是一个位置运算符,可以应用于图像中的任何像素(忽略边缘效应):例如, ( 1 , 2 ) (1,2) (1,2)可以表示“一向下,二向右”。

  • 对于给定的偏移量,具有p个不同像素值的图像将产生一个 p × p p\times p p×p共生矩阵。

  • 共现矩阵的值 ( i , j ) t h (i,j)^{th} (i,j)th给出了图像中像素值 i t h i^{th} ith和像素值 j t h j^{th} jth以偏移给定的关系出现的次数。

对于具有p个不同像素值的图像, p × p p\times p p×p共生矩阵 C 在 n × m n\times m n×m图像 I I I上定义,由偏移量 ( Δ x , Δ y ) (\Delta x, \Delta y) (Δx,Δy) 参数化,如下所示:

C Δ x , Δ y ( i , j ) = ∑ x = 1 n ∑ y = 1 m { 1 , if  I ( x , y ) = i and  I ( x + Δ x , y + Δ y ) = j 0 , otherwise C_{\Delta x,\Delta y}(i,j) = \sum_{x=1}^{n} \sum_{y=1}^{m} \begin{cases} 1, & \text{if } I(x,y) = i \text{ and } I(x + \Delta x, y + \Delta y) = j \\ 0, & \text{otherwise} \end{cases} CΔx,Δy(i,j)=x=1ny=1m{1,0,if I(x,y)=i and I(x+Δx,y+Δy)=jotherwise

其中: i i i j j j是像素值;x和y是图像 I I I 中的空间位置;偏移量 ( Δ x , Δ y ) (\Delta x, \Delta y) (Δx,Δy)定义了计算该矩阵的空间关系;并 I ( x , y ) I(x,y) I(x,y)表示像素 ( x , y ) (x,y) (x,y)处的像素值。

图像的“值”最初是指指定像素的灰度值,但可以是任何值,从二进制开/关值到 32 位颜色及以上。 (请注意,32 位颜色将产生 2 32 × 2 32 2^{32} \times 2^{32} 232×232 共现矩阵!)

共现矩阵也可以用距离 d d d和角度 t h e t a theta theta来参数化,而不是用偏移量 ( Δ x , Δ y ) (\Delta x, \Delta y) (Δx,Δy)

任何矩阵或矩阵对都可以用来生成共生矩阵,尽管它们最常见的应用是测量图像中的纹理,因此如上所述的典型定义假设矩阵是图像。

还可以跨两个不同的图像定义矩阵。这样的矩阵然后可以用于颜色映射。

别名

共现矩阵也称为:

  • GLCM(灰度共生矩阵)
  • GLCH(灰度共生直方图)
  • 空间相关矩阵

图像分析中的应用

无论是考虑图像的强度或灰度值还是颜色的各个维度,共生矩阵都可以衡量图像的纹理。由于共现矩阵通常较大且稀疏,因此通常采用矩阵的各种度量来获得更有用的特征集。使用此技术生成的特征通常称为 Haralick 特征,以 Robert Haralick 命名。

纹理分析通常涉及检测图像中旋转不变的方面。为了近似这一点,通常会计算对应于相同关系但以各种规则角度(例如 0、45、90 和 135 度)旋转的共生矩阵并求和。

共生矩阵、小波变换和模型拟合等纹理测量尤其在医学图像分析中得到了应用。

应用场景

  1. 自然语言处理(NLP): 共现矩阵在词汇语义分析、主题建模等方面非常有用。它可以帮助理解不同词汇之间的关系,进而用于词义的聚类分析。

  2. 图像处理: 在图像分析中,共现矩阵通常用于纹理特征的提取,可以帮助区分不同的物体或场景。

  3. 数据分析和挖掘: 共现矩阵还可以用于各种数据分析任务,如推荐系统、模式识别等。

具体示例

NLP示例

假设我们有一个简短的文本:“the cat sat on the mat”。我们可以创建一个共现矩阵,其中包含文本中的每个单词(忽略重复),并计算它们共同出现的频率。

图像处理示例

在一张图片中,我们可以计算不同像素值之间的共现频率,这可以帮助我们分析图像的纹理特征。

AI图片示例

为了更直观地解释这一概念,我将创建一张图像来展示共现矩阵在NLP和图像处理中的应用。图像将包括一个简单的NLP共现矩阵示例,以及一个图像处理中的共现矩阵示例。

让我们开始创建这个图像。

在这里插入图片描述
这张图像直观地展示了共现矩阵在自然语言处理和图像处理中的应用。

  • 左半部分展示了一个用于自然语言处理的共现矩阵示例。这里用一个简单的表格表示了几个单词(如’the’, ‘cat’, ‘sat’, ‘on’, ‘mat’)在一个样本句子中的共同出现频率。

  • 右半部分则展示了图像处理中的共现矩阵。这部分用不同灰度的网格表示了在一个样本图像中不同像素值的共现频率。

这样的视觉展示有助于更好地理解共现矩阵的概念和其在不同领域的应用。

这篇关于【深度学习每日小知识】Co-occurrence matrix 共现矩阵的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/639928

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

Java架构师知识体认识

源码分析 常用设计模式 Proxy代理模式Factory工厂模式Singleton单例模式Delegate委派模式Strategy策略模式Prototype原型模式Template模板模式 Spring5 beans 接口实例化代理Bean操作 Context Ioc容器设计原理及高级特性Aop设计原理Factorybean与Beanfactory Transaction 声明式事物

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

sqlite3 相关知识

WAL 模式 VS 回滚模式 特性WAL 模式回滚模式(Rollback Journal)定义使用写前日志来记录变更。使用回滚日志来记录事务的所有修改。特点更高的并发性和性能;支持多读者和单写者。支持安全的事务回滚,但并发性较低。性能写入性能更好,尤其是读多写少的场景。写操作会造成较大的性能开销,尤其是在事务开始时。写入流程数据首先写入 WAL 文件,然后才从 WAL 刷新到主数据库。数据在开始

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识