【动态规划】【广度优先搜索】【状态压缩】847 访问所有节点的最短路径

本文主要是介绍【动态规划】【广度优先搜索】【状态压缩】847 访问所有节点的最短路径,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作者推荐

视频算法专题

本文涉及知识点

动态规划汇总
广度优先搜索 状态压缩

LeetCode847 访问所有节点的最短路径

存在一个由 n 个节点组成的无向连通图,图中的节点按从 0 到 n - 1 编号。
给你一个数组 graph 表示这个图。其中,graph[i] 是一个列表,由所有与节点 i 直接相连的节点组成。
返回能够访问所有节点的最短路径的长度。你可以在任一节点开始和停止,也可以多次重访节点,并且可以重用边。
示例 1:
输入:graph = [[1,2,3],[0],[0],[0]]
输出:4
解释:一种可能的路径为 [1,0,2,0,3]
示例 2:
输入:graph = [[1],[0,2,4],[1,3,4],[2],[1,2]]
输出:4
解释:一种可能的路径为 [0,1,4,2,3]
参数范围
n == graph.length
1 <= n <= 12
0 <= graph[i].length < n
graph[i] 不包含 i
如果 graph[a] 包含 b ,那么 graph[b] 也包含 a
输入的图总是连通图

广度优先搜索

需要记录那些节点已经访问,用状态压缩 (1 << i )表示第i个节点已访问。
还要记录此路径的最后节点。
这两个状态相同,后面的路径则相同。 由于是广度优先搜索,所以路径短的先处理,每个状态只会处理一次。
vDis 记录各状态的最短路径数。
que 记录状态。
时间复杂度:O(n2nn) 枚举起点O(n) 枚举状态数O(2^n) 每个状态处理。

核心代码

class Solution {
public:int shortestPathLength(vector<vector<int>>& graph) {m_c = graph.size();m_iMaskCount = 1 << m_c;for (int i = 0; i < m_c; i++){BFS(graph, i);}return m_iRet;}void BFS(vector<vector<int>>& neiBo,int start){vector<vector<int>> vDis(m_c, vector<int>(m_iMaskCount, m_iNotMay));queue<pair<int, int>> que;auto Add = [&](int node, int iPreMask,int iNew){const int iMask = iPreMask | (1 << node);if (vDis[node][iMask] <= iNew ){return ;}vDis[node][iMask] = iNew;que.emplace(node, iMask);};Add( start,0, 0);while (que.size()){auto [preNode, preMask] = que.front();const int iNew = vDis[preNode][preMask]+1;que.pop();for (const auto& next : neiBo[preNode]){Add(next, preMask, iNew);}}for (const auto& v : vDis){m_iRet = min(m_iRet, v.back());}}const int m_iNotMay = 100'000;int m_c, m_iMaskCount;int m_iRet = m_iNotMay;
};

测试用例

template<class T>
void Assert(const T& t1, const T& t2)
{assert(t1 == t2);
}template<class T>
void Assert(const vector<T>& v1, const vector<T>& v2)
{if (v1.size() != v2.size()){assert(false);return;}for (int i = 0; i < v1.size(); i++){Assert(v1[i], v2[i]);}}int main()
{	vector<vector<int>> graph;{Solution sln;graph = { {1,2,3},{0},{0},{0} };auto res = sln.shortestPathLength(graph);Assert(res, 4);}{Solution sln;graph = { {1},{0,2,4},{1,3,4},{2},{1,2} };auto res = sln.shortestPathLength(graph);Assert(res, 4);}}

动态规划

节点的距离用多源路径的最短距离。

动态规划的状态表示

mask&(1 << next)表示经过了next节点。
vDis[node][mask] 有以下两种含义:
一, 以node结尾,经过mask指定节点的最短路径经过的节点数。
二,以node结尾,且只经过node节点一次,经过mask指定节点的最短路径经过的节点数。
含义二,如果存在,则是含义二,否则是含义一。 必须枚举所有符合含义二的可能。

动态规划的转移方程

vDis[next][maks|next]= MinSelf n e x t = 0 m c − 1 \Large_{next=0}^{m_c-1} next=0mc1vDis[i][mask]+距离(i,next)
vDis[i][mask] 必须合法,且mask不包括next节点

动态规划的填表顺序

mask从1到大,确保动态规划的无后效性。某路径的编码是mask,经过新节点next后,新编码为iNewMask。则iNewMask-mask = 1 << next
1 << next 恒大于0。

动态规划的初始值

全部为不存在的数

动态规划的返回值

Min j = 0 m c − 1 \Large_{j=0}^{m_c-1} j=0mc1vDis[j].back() -1

证明

将最短路径的重复节点删除,保留任意一个。删除后为: i 1 \Large_1 1 i 2 \Large_2 2 …i n \Large_n n 。任意i k \Large_k k到i k + 1 \Large_{k+1} k+1的路径一定是最短,否则替换成最短。直接枚举,12! 超时。 用动态规划,共2nn种状态,空间复杂度O(2nn),每种状态转移时间复杂度O(n),故总时间复杂度O(2nnn)。

代码

//多源码路径
template<class T, T INF = 1000 * 1000 * 1000>
class CFloyd
{
public:CFloyd(const  vector<vector<T>>& mat){m_vMat = mat;const int n = mat.size();for (int i = 0; i < n; i++){//通过i中转for (int i1 = 0; i1 < n; i1++){for (int i2 = 0; i2 < n; i2++){//此时:m_vMat[i1][i2] 表示通过[0,i)中转的最短距离m_vMat[i1][i2] = min(m_vMat[i1][i2], m_vMat[i1][i] + m_vMat[i][i2]);//m_vMat[i1][i2] 表示通过[0,i]中转的最短距离}}}};vector<vector<T>> m_vMat;
};class Solution {
public:int shortestPathLength(vector<vector<int>>& graph) {m_c = graph.size();m_iMaskCount = 1 << m_c;vector<vector<int>> mat(m_c, vector<int>(m_c, 1000 * 1000 * 1000));for (int i = 0; i < m_c; i++){for (const auto& j : graph[i]){mat[i][j] = 1;}}CFloyd floyd(mat);vector<vector<int>> vDis(m_c, vector<int>(m_iMaskCount, m_iNotMay));for (int i = 0; i < m_c; i++){	vDis[i][1 << i] = 1;}for (int mask = 1; mask < m_iMaskCount; mask++){for (int i = 0; i < m_c; i++){if (vDis[i][mask] >= m_iNotMay){continue;}for (int next = 0 ;next < m_c ;next++ ){if ((1 << next) & mask){continue;//已经访问}const int iNewMask = (1 << next) | mask;vDis[next][iNewMask] = min(vDis[next][iNewMask], vDis[i][mask] + floyd.m_vMat[i][next]);}}}int iRet = m_iNotMay;for (const auto& v : vDis){iRet = min(iRet, v.back());}return iRet-1;}const int m_iNotMay = 100'000;int m_c, m_iMaskCount;};

2023年1月

class Solution {
public:
int shortestPathLength(vector<vector>& graph) {
auto Add = [this](int iMask, int iPos, int iOpeNum)
{
if (INT_MAX != m_vMaskPosMinOpe[iMask][iPos])
{
return;
}
m_vQue.emplace_back(iMask, iPos);
m_vMaskPosMinOpe[iMask][iPos] = iOpeNum;
};
m_c = graph.size();
for (int i = 0; i < sizeof(m_vMaskPosMinOpe) / sizeof(m_vMaskPosMinOpe[0]); i++)
{
for (int j = 0; j < sizeof(m_vMaskPosMinOpe[0]) / sizeof(m_vMaskPosMinOpe[0][0]); j++)
{
m_vMaskPosMinOpe[i][j] = INT_MAX;
}
}
for (int i = 0; i < m_c; i++)
{
Add(1 << i, i, 0);
}
for (int i = 0; i < m_vQue.size(); i++)
{
const int iMask = m_vQue[i].first;
const int iPos = m_vQue[i].second;
for (auto& next : graph[iPos])
{
int iNewMask = iMask | (1 << next);
Add(iNewMask, next, m_vMaskPosMinOpe[iMask][iPos] + 1);
}
}
int iMin = INT_MAX;
for (int i = 0; i < sizeof(m_vMaskPosMinOpe[0]) / sizeof(m_vMaskPosMinOpe[0][0]); i++)
{
iMin = min(iMin, m_vMaskPosMinOpe[(1 << m_c) - 1][i]);
}
return iMin;
}
vector<std::pair<int,int>> m_vQue;
int m_vMaskPosMinOpe[1 << 12 ][12];
int m_c;
};

2023年8月

class Solution {
public:
int shortestPathLength(vector<vector>& graph) {
auto Add = [this](int iMask, int iPos, int iOpeNum)
{
if (INT_MAX != m_vMaskPosMinOpe[iMask][iPos])
{
return;
}
m_vQue.emplace_back(iMask, iPos);
m_vMaskPosMinOpe[iMask][iPos] = iOpeNum;
};
m_c = graph.size();
for (int i = 0; i < sizeof(m_vMaskPosMinOpe) / sizeof(m_vMaskPosMinOpe[0]); i++)
{
for (int j = 0; j < sizeof(m_vMaskPosMinOpe[0]) / sizeof(m_vMaskPosMinOpe[0][0]); j++)
{
m_vMaskPosMinOpe[i][j] = INT_MAX;
}
}
for (int i = 0; i < m_c; i++)
{
Add(1 << i, i, 0);
}
for (int i = 0; i < m_vQue.size(); i++)
{
const int iMask = m_vQue[i].first;
const int iPos = m_vQue[i].second;
for (auto& next : graph[iPos])
{
int iNewMask = iMask | (1 << next);
Add(iNewMask, next, m_vMaskPosMinOpe[iMask][iPos] + 1);
}
}
int iMin = INT_MAX;
for (int i = 0; i < sizeof(m_vMaskPosMinOpe[0]) / sizeof(m_vMaskPosMinOpe[0][0]); i++)
{
iMin = min(iMin, m_vMaskPosMinOpe[(1 << m_c) - 1][i]);
}
return iMin;
}
vector<std::pair<int,int>> m_vQue;
int m_vMaskPosMinOpe[1 << 12 ][12];
int m_c;
};

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771

如何你想快

速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

相关

下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653

我想对大家说的话
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。

这篇关于【动态规划】【广度优先搜索】【状态压缩】847 访问所有节点的最短路径的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/632898

相关文章

Android 悬浮窗开发示例((动态权限请求 | 前台服务和通知 | 悬浮窗创建 )

《Android悬浮窗开发示例((动态权限请求|前台服务和通知|悬浮窗创建)》本文介绍了Android悬浮窗的实现效果,包括动态权限请求、前台服务和通知的使用,悬浮窗权限需要动态申请并引导... 目录一、悬浮窗 动态权限请求1、动态请求权限2、悬浮窗权限说明3、检查动态权限4、申请动态权限5、权限设置完毕后

linux进程D状态的解决思路分享

《linux进程D状态的解决思路分享》在Linux系统中,进程在内核模式下等待I/O完成时会进入不间断睡眠状态(D状态),这种状态下,进程无法通过普通方式被杀死,本文通过实验模拟了这种状态,并分析了如... 目录1. 问题描述2. 问题分析3. 实验模拟3.1 使用losetup创建一个卷作为pv的磁盘3.

Python利用PIL进行图片压缩

《Python利用PIL进行图片压缩》有时在发送一些文件如PPT、Word时,由于文件中的图片太大,导致文件也太大,无法发送,所以本文为大家介绍了Python中图片压缩的方法,需要的可以参考下... 有时在发送一些文件如PPT、Word时,由于文件中的图片太大,导致文件也太大,无法发送,所有可以对文件中的图

使用Navicat工具比对两个数据库所有表结构的差异案例详解

《使用Navicat工具比对两个数据库所有表结构的差异案例详解》:本文主要介绍如何使用Navicat工具对比两个数据库test_old和test_new,并生成相应的DDLSQL语句,以便将te... 目录概要案例一、如图两个数据库test_old和test_new进行比较:二、开始比较总结概要公司存在多

Java实现状态模式的示例代码

《Java实现状态模式的示例代码》状态模式是一种行为型设计模式,允许对象根据其内部状态改变行为,本文主要介绍了Java实现状态模式的示例代码,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来... 目录一、简介1、定义2、状态模式的结构二、Java实现案例1、电灯开关状态案例2、番茄工作法状态案例

本地搭建DeepSeek-R1、WebUI的完整过程及访问

《本地搭建DeepSeek-R1、WebUI的完整过程及访问》:本文主要介绍本地搭建DeepSeek-R1、WebUI的完整过程及访问的相关资料,DeepSeek-R1是一个开源的人工智能平台,主... 目录背景       搭建准备基础概念搭建过程访问对话测试总结背景       最近几年,人工智能技术

Ollama整合open-webui的步骤及访问

《Ollama整合open-webui的步骤及访问》:本文主要介绍如何通过源码方式安装OpenWebUI,并详细说明了安装步骤、环境要求以及第一次使用时的账号注册和模型选择过程,需要的朋友可以参考... 目录安装环境要求步骤访问选择PjrIUE模型开始对话总结 安装官方安装地址:https://docs.

Java使用POI-TL和JFreeChart动态生成Word报告

《Java使用POI-TL和JFreeChart动态生成Word报告》本文介绍了使用POI-TL和JFreeChart生成包含动态数据和图表的Word报告的方法,并分享了实际开发中的踩坑经验,通过代码... 目录前言一、需求背景二、方案分析三、 POI-TL + JFreeChart 实现3.1 Maven

通过prometheus监控Tomcat运行状态的操作流程

《通过prometheus监控Tomcat运行状态的操作流程》文章介绍了如何安装和配置Tomcat,并使用Prometheus和TomcatExporter来监控Tomcat的运行状态,文章详细讲解了... 目录Tomcat安装配置以及prometheus监控Tomcat一. 安装并配置tomcat1、安装

Java导出Excel动态表头的示例详解

《Java导出Excel动态表头的示例详解》这篇文章主要为大家详细介绍了Java导出Excel动态表头的相关知识,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录前言一、效果展示二、代码实现1.固定头实体类2.动态头实现3.导出动态头前言本文只记录大致思路以及做法,代码不进