从数据角度分析年龄与NBA球员赛场表现的关系【数据分析项目分享】

本文主要是介绍从数据角度分析年龄与NBA球员赛场表现的关系【数据分析项目分享】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

好久不见朋友们,今天给大家分享一个我自己很感兴趣的话题分析——NBA球员表现跟年龄关系到底大不大?数据来源于Kaggle,感兴趣的朋友可以点赞评论留言,我会将数据同代码一起发送给你。

目录

  • NBA球员表现的探索性数据分析
    • 导入Python库和加载数据
  • 数据简要概述
  • 数据可视化
  • 年龄与上场时间的比较
  • 年龄与出场次数相比较
  • 年龄与PER相比较
  • 结论

NBA球员表现的探索性数据分析

美国国家篮球协会(NBA)中有各个年龄段的新秀和资深球员。本次数据分析将突出年龄和技能之间的关系,同时研究年龄在球员表现中的因素。

导入Python库和加载数据

首先,加载数据,并按球员名称进行索引,然后查看前5行数据,以了解数据的样式。

import pandas as pd
pd.plotting.register_matplotlib_converters()
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
from sklearn.linear_model import LinearRegression as linregNBA = pd.read_csv('./nba.csv',index_col=1)
NBA.head() 
RkPosAgeTmGMPPERTS%3PArFTr...Unnamed: 19OWSDWSWSWS/48Unnamed: 24OBPMDBPMBPMVORP
Player
Alex Abrines\abrinal011SG24OKC7511349.00.5670.7590.158...NaN1.31.02.20.094NaN-0.5-1.7-2.2-0.1
Quincy Acy\acyqu012PF27BRK7013598.20.5250.8000.164...NaN-0.11.11.00.036NaN-2.0-0.2-2.2-0.1
Steven Adams\adamsst013C24OKC76248720.60.6300.0030.402...NaN6.73.09.70.187NaN2.21.13.33.3
Bam Adebayo\adebaba014C20MIA69136815.70.5700.0210.526...NaN2.31.94.20.148NaN-1.61.80.20.8
Arron Afflalo\afflaar015SG32ORL536825.80.5160.4320.160...NaN-0.10.20.10.009NaN-4.1-1.8-5.8-0.7

5 rows × 28 columns

*对于本次分析,我们其实只需要以下几个字段的数据。

  • 球员的年龄, (Age)
  • 出场场次 (G)
  • 出场时间 (MP)
  • 效率值Player Efficiency Rating (PER)
  • 真实命中率 (TS%)

除了球员姓名外,其余列将被删除,并且任何包含缺失数据的列也将被删除。

nba_temp = NBA.loc[:,  ['Age', 'G', 'MP','PER','TS%']]
nba = nba_temp.dropna(axis=0)
nba = nba[~nba.index.duplicated()]
nba.head()
AgeGMPPERTS%
Player
Alex Abrines\abrinal01247511349.00.567
Quincy Acy\acyqu01277013598.20.525
Steven Adams\adamsst012476248720.60.630
Bam Adebayo\adebaba012069136815.70.570
Arron Afflalo\afflaar0132536825.80.516

为了更容易理解,列将被重新命名,以将它们转为非缩写形式。

nba =nba.rename(index=str, columns={'G' : '# Games','MP': 'Minutes Played','PER': 'Player Efficiency Rate'})

数据简要概述

print(nba.shape)  # 看下数量级
nba.describe()
(537, 5)
Age# GamesMinutes PlayedPlayer Efficiency RateTS%
count537.000000537.000000537.000000537.000000537.000000
mean26.10428348.6052141105.86219712.9517690.531965
std4.17485427.312191855.1955228.7494760.124523
min19.0000001.0000001.000000-41.1000000.000000
25%23.00000021.000000253.0000009.7000000.500000
50%25.00000056.0000001045.00000012.8000000.541000
75%29.00000073.0000001810.00000016.4000000.582000
max41.00000082.0000003026.000000133.8000001.500000
  • 在2017-18赛季,大约有537球员出场打比赛。
  • 根据以往赛季的年龄平均值,预计2017-18赛季的NBA球员平均年龄约为26岁。
  • 有趣的是,联盟中最年长的球员是41岁,比最年轻的球员大22岁!(最大的没记错的话应该是卡特,最小的没啥印象)
  • 平均每位球员在赛季中打了43场比赛,而其真实命中率约为53%

数据可视化

正如之前注意到的,球员年龄范围广泛,但各年龄的分布人数情况又如何呢?

sns.set_style("dark")
plt.figure(figsize=(10,10))
plt.ylabel('# of Players')
sns.histplot(data=nba, x='Age')
plt.show()

在这里插入图片描述

联盟过去和现在都倾向于年轻球员,这是可以预料的。球队通常会寻找年轻的潜力球员,在他们大学期间或之后选择他们。

然而,这个直方图只能提供有限的信息,我们仍然想知道年龄是否真的会影响球员的表现。所以让我们从年龄与参加比赛数量的关系开始看起吧

年龄与上场时间的比较

plt.figure(figsize=(20,10))
plt.ylabel('Minutes Played')
plt.xlabel('Age')
sns.regplot(data=nba, x='Age',y='Minutes Played')
plt.show()

在这里插入图片描述

从上述散点图我们可以得知:

  1. 年龄在19岁至28岁之间的年轻球员比年龄在28岁至41岁之间的老年球员打的比赛更多。
  2. 年轻球员的上场时间范围总体上比老年球员更大。
  3. 总体上,老年球员的上场时间比年轻球员更长。

需要注意的是,这可能不是散点图的最佳线性拟合,然而,该图表大致说明年龄可能不会影响比赛中的上场时间。

年龄较大可能意味着更多的经验,从而在场上停留更长时间,但也有许多年轻的潜力球员比老将球员打得时间更长。

年龄与出场次数相比较

在我们进行年龄与参与游戏次数之间的比较之前,让我们先看一下参与游戏次数与比赛时间之间的关系。

plt.figure(figsize=(20,20))
plt.ylabel('Minutes')
plt.xlabel('Games')
sns.scatterplot(data=nba, x='# Games',y='Minutes Played')
plt.show()

在这里插入图片描述

看起来,如果一个球员在赛季中参加的比赛越多,他们的平均比赛时间也会更长。

在这个基础上,让我们在这个比较中加入年龄。

plt.figure(figsize=(15,10))
plt.ylabel('Minutes')
plt.xlabel('Games')
sns.scatterplot(data=nba, x='# Games',y='Minutes Played', hue='Age')
plt.show()

在这里插入图片描述

关于这个散点图需要注意的一些点:

  1. 这个散点图证实了我们关于年龄与比赛时间之间关系的结论,因为年龄大的和年龄小的人在各种时间段内都有参与比赛的情况。
  2. 年龄较小和较大的范围都分布在整个图中,这表明年龄可能不影响个体参与比赛的次数。

在表现方面,看起来年龄只是一个数字?也许是这样,但我们目前只关注了定量方面的因素,那么比赛中的实际技能呢?

年龄与PER相比较

尽管可能有球员参加更多比赛或比赛时间更长,但这并不能准确地描绘这些个体的表现。因此,我们将根据年龄来评估这些散点图的真实性,考察球员的球员效率评分(PER)。

但是,什么是PER呢?PER简单来讲就是:它允许将篮球运动员的所有成就(得分、盖帽、抢断等)转化为一个单一的数字。PER也是一种每分钟的度量方式,可以比较任意两位选手,而不受比赛场次或比赛时间的限制。这也是为什么我们之前删除了一些列的原因,因为这样可以更简便地比较累积统计数据,如PER,而不需要处理每个个体方面的数据。

有了PER,我们现在可以从新的角度分析年龄对表现的影响。

plt.figure(figsize=(15,10))
sns.regplot(data=nba, x='Minutes Played',y='Player Efficiency Rate')
plt.show() 

在这里插入图片描述

单看平均趋势的话,如果一个球员参与比赛的时间更长,他们的PER很可能比大多数人要高。

那接下来,我们来比较下比赛次数与PER之间的关系。

plt.figure(figsize=(15,10))
sns.regplot(data=nba, x='# Games',y='Player Efficiency Rate')
plt.show() 

在这里插入图片描述

同样的情况,如果一个球员参加的比赛更多,他们的PER很可能更高。

所以到目前为止,一切似乎都符合预期,PER与球员在比赛中的参与程度呈正相关关系。

那现在,让我们开始将年龄与这两个变量进行比较。

plt.figure(figsize=(15,10))
sns.regplot(data=nba, x='Age',y='Player Efficiency Rate')
plt.show() 

在这里插入图片描述

在回归斜率中几乎是一条直线,年龄几乎与PER没有关系。但这意味着什么呢?

这意味着年龄与球员效率评分之间几乎没有明显的关联。年龄对于一个球员的表现并不是决定因素,至少在这个数据集中。其他因素,如技能水平、体能和经验可能更重要。

结论

尽管我们对不少的变量同年龄进行了比较,并使用了不同的绘图方法,但年龄似乎从未对最终结果产生影响。年龄对于篮球运动员来说既不是负面特征,也不是优势。

根据这个分析,还可以得出一些其他的结论:

  • 这些仅仅是一个赛季中少数球员的结果,因此我们不能轻易将此结论推广到NBA的每个赛季。
  • 在NBA中,年龄是相对而言的。年龄范围在很大程度上分为年轻球员和年长球员,但可以重新进行分析,并尝试使用更小的年龄段,可能会得出新的见解。
  • 这个分析纯粹基于可视数据,对于个人表现的每个方面,如领导能力和团队合作,并没有提供深入了解。

总的来说,这个分析我觉得是可以给到我们一个新的视角来了解NBA球员的水平,因为即使年龄不小了,他们也不会让年龄成为阻碍,努力成为最好的球员。

最后,很高兴在kaggle闲逛的时候有幸能看到一个我这么感兴趣的数据集,也仅以此篇,致敬詹库杜,致敬那些现在仍在奋斗着的NBA老将们。


推荐关注的专栏

👨‍👩‍👦‍👦 数据分析:分享数据分析实战项目和常用技能整理

这篇关于从数据角度分析年龄与NBA球员赛场表现的关系【数据分析项目分享】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/629939

相关文章

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

Tomcat版本与Java版本的关系及说明

《Tomcat版本与Java版本的关系及说明》:本文主要介绍Tomcat版本与Java版本的关系及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Tomcat版本与Java版本的关系Tomcat历史版本对应的Java版本Tomcat支持哪些版本的pythonJ

Spring事务中@Transactional注解不生效的原因分析与解决

《Spring事务中@Transactional注解不生效的原因分析与解决》在Spring框架中,@Transactional注解是管理数据库事务的核心方式,本文将深入分析事务自调用的底层原理,解释为... 目录1. 引言2. 事务自调用问题重现2.1 示例代码2.2 问题现象3. 为什么事务自调用会失效3

一文教你如何将maven项目转成web项目

《一文教你如何将maven项目转成web项目》在软件开发过程中,有时我们需要将一个普通的Maven项目转换为Web项目,以便能够部署到Web容器中运行,本文将详细介绍如何通过简单的步骤完成这一转换过程... 目录准备工作步骤一:修改​​pom.XML​​1.1 添加​​packaging​​标签1.2 添加

MySQL大表数据的分区与分库分表的实现

《MySQL大表数据的分区与分库分表的实现》数据库的分区和分库分表是两种常用的技术方案,本文主要介绍了MySQL大表数据的分区与分库分表的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. mysql大表数据的分区1.1 什么是分区?1.2 分区的类型1.3 分区的优点1.4 分

Mysql删除几亿条数据表中的部分数据的方法实现

《Mysql删除几亿条数据表中的部分数据的方法实现》在MySQL中删除一个大表中的数据时,需要特别注意操作的性能和对系统的影响,本文主要介绍了Mysql删除几亿条数据表中的部分数据的方法实现,具有一定... 目录1、需求2、方案1. 使用 DELETE 语句分批删除2. 使用 INPLACE ALTER T

tomcat多实例部署的项目实践

《tomcat多实例部署的项目实践》Tomcat多实例是指在一台设备上运行多个Tomcat服务,这些Tomcat相互独立,本文主要介绍了tomcat多实例部署的项目实践,具有一定的参考价值,感兴趣的可... 目录1.创建项目目录,测试文China编程件2js.创建实例的安装目录3.准备实例的配置文件4.编辑实例的

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

找不到Anaconda prompt终端的原因分析及解决方案

《找不到Anacondaprompt终端的原因分析及解决方案》因为anaconda还没有初始化,在安装anaconda的过程中,有一行是否要添加anaconda到菜单目录中,由于没有勾选,导致没有菜... 目录问题原因问http://www.chinasem.cn题解决安装了 Anaconda 却找不到 An

Spring定时任务只执行一次的原因分析与解决方案

《Spring定时任务只执行一次的原因分析与解决方案》在使用Spring的@Scheduled定时任务时,你是否遇到过任务只执行一次,后续不再触发的情况?这种情况可能由多种原因导致,如未启用调度、线程... 目录1. 问题背景2. Spring定时任务的基本用法3. 为什么定时任务只执行一次?3.1 未启用