本文主要是介绍算法上机(三) 动态规划解决装配线排程(调度)问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
问题描述
一汽车厂有两条装配线,每条装 配线有n个工序站台,每条装配线的 第j个站台的功能相同,但是效率不一致,每条装配线的上线和下线时间表示为e1,e2和x1,x2。另外,切换线路也需要时间t1j,t2j。求如何充分利用两条装配线, 使得组装一辆汽车的时间短。
如图所示
解决方法
这里介绍两种方法。第一,蛮力法。简单易懂,时间复杂度高,不推荐。第二,动态规划法。比较难理解,但效率高。
蛮力法
用迭代的方法计算装配线排程 所有可能的组合情况,比较并选择出短时间的组合。由于每个站有两种可能,因此总共有2的n次方种可能,时间复杂度也为O(2^n)。
动态规划法
自底向上求解最优解。先求出到第i个站的最优解,再根据此求出第i+1个站的,直到第n个站,以及下线完成生产。有:f1[i] = min(f1[i-1]+a1[i],f2[i-1]+t2[i-1]+a1[i])。
其中,f1[i]表示在第一条线完成第i个站所需要的最短时间,a1[i]表示在第一条线第i个站加工需要的时间,t1[i]表示在第一条线第i个站加工完成后转到第二条线需要的时间。
代码如下。
#include <stdio.h>
#include <stdlib.h>const int n = 5; //每条线工作站的数目
int a1[n] = {7,9,3,4,8}; //元件在第一条线第i个站加工需要的时间
int a2[n] = {8,5,6,4,5};
int e1=2,e2=4,x1=3,x2=6; //e起始入线时间,x终止出线时间
int t1[n-1] = {2,3,1,3}; //在第i个站换线需要的时间
int t2[n-1] = {2,1,2,2};
int f1[n],f2[n]; // 动态规划,存储到第i个站的最短时间
int l[2][n]; //存储路径
int f,last; //最终时间和路径 void fatestway(){f1[0] = e1+a1[0];l[0][0] =1;f2[0] = e2+a2[0];l[1][0] = 2;printf("%d,%d\n",f1[0],f2[0]);for(int i=1;i<n;i++){//f1[i] = min(f1[i-1]+a1[i],f2[i-1]+t2[i-1]+a1[i])if(f1[i-1]+a1[i]<f2[i-1]+t2[i-1]+a1[i]){f1[i] = f1[i-1]+a1[i];l[0][i] = 1;}else{f1[i] = f2[i-1]+t2[i-1]+a1[i];l[0][i] = 2;}//f2[i] = min(f2[i-1]+a2[i],f1[i-1]+t1[i-1]+a2[i])if(f2[i-1]+a2[i]<f1[i-1]+t1[i-1]+a2[i]){f2[i] = f2[i-1]+a2[i];l[1][i] = 2;}else{f2[i] = f1[i-1]+t1[i-1]+a2[i];l[1][i] = 1;}printf("%d,%d\n",f1[i],f2[i]);}if(f1[n-1]+x1<f2[n-1]+x2){f = f1[n-1]+x1;last = 1;}else{f = f2[n-1]+x2;last = 2;}
}
//递归调用,逆序打印出每个站在哪条线路
void print(int i,int j){if(j==1){printf("Line:%d Station:%d\n",i,j);}else{print(l[i-1][j-1],j-1);printf("Line:%d Station:%d\n",i,j);}
}int main (void){fatestway();print(last,n);printf("总路线时间:%d",f);
}
这篇关于算法上机(三) 动态规划解决装配线排程(调度)问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!