TVP-VAR模型MATLAB代码【增加时间标签、三维脉冲响应图、sa2参数输出】(企研数据修改自Nakajima(2011))

本文主要是介绍TVP-VAR模型MATLAB代码【增加时间标签、三维脉冲响应图、sa2参数输出】(企研数据修改自Nakajima(2011)),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、TVP-VAR模型与常用代码简介

【代码已修改完善,详见评论区】TVP-VAR模型(Time-Varying Parameter Vector AutoRegression,时变参数向量自回归模型)是在VAR模型的基础上拓展而来的模型,其假定系数矩阵和协方差矩阵是时变的,使得模型可以捕捉经济结构随时间变化的过程。

日本学者中岛上智(Jouchi Nakajima)于2011年发表的Time-Varying Parameter VAR Model with Stochastic Volatility: An Overview of Methodology and Empirical Applications是TVP-VAR领域的经典文献,其同时在个人网站上(https://sites.google.com/site/jnakajimaweb/)分享了论文中估计TVP-VAR模型所用的Oxmetrics和MATLAB程序代码,由于OxMetrics软件较为小众,因此很多人会选择使用更为熟悉的MATLAB版本的代码。

中岛上智教授分享的代码上一次更新时间为2020年5月1日,然而MATLAB版本的代码相比OxMetrics存在部分美中不足的地方,即MATLAB版本的代码无法显示现实的时间点,只能显示其在样本数据中的顺序,且MATLAB的作图限制导致其最多允许四条曲线叠加,如果想同时观察四种以上不同情况,难度比较大。

二、我们的工作

针对上述情况,我们谨慎修改了中岛上智教授发布的MATLAB版本的TVP-VAR模型代码,允许用户补充时间标签数据并将其显示出来,同时添加了生成三维脉冲响应图形的功能;针对许多人反应的缺少sa2参数的问题,我们谨慎添加了sa2参数结果的汇报需要声明的是,我们并未修改任何估计方法或参数,以确保结果的准确无误

如需获取代码压缩包请私信

以下为增加了sa2参数的汇报结果对比:

效果对比1:

效果对比2:

以下为原始输出结果和修改后输出结果的对比:

效果对比3:

效果对比4:

效果对比6:

效果对比5:

以下为部分三维脉冲响应图形的展示:

三、使用说明

  1. 中岛上智教授提供了样例数据,请严格按照样例数据的格式将要估计的数据存入EXCEL表中,每一列存储一个变量,左上角不留空白,且表中除数据外不存在多余的空白行,否则会导致估计出错;

  1. 例如,在中岛教授提供的tvpvar_ex.xlsx中,总共有124期、共三个变量的数据,存储在A1-C124的范围内的单元格中,如果存在空白行,则可能导致MATLAB在载入数据时扩大读取范围,如将A1-D200范围内的单元格一并读入,最终导致参数估计失败;

  1. 我们仿照并补充了中岛上智教授的样例数据所对应的时间标签数据,存储在tvpvar_ex_time.xlsx的A1-A124范围内的单元格中,EXCEL表中同样不允许存在多余的空白行;

  1. 时间格式等参数请参阅MATLAB的相关文档;

  1. tvpvar_m文件夹中为中岛教授的原始代码,tvpvar_m_modified文件夹中为修改后的代码,本版本代码仅修改了以下文件:drawimp.m;mcmc.m;tvpvar_ex1.m;tvpvar_ex2.m;

  1. sa2参数的汇报功能由团队成员添加,如存疑可以自行删去。

四、特别声明

本代码仅是对中岛上智教授工作成果的少量修饰,代码本身仍然是中岛上智教授的工作成果,如果使用了本代码,请按如下规范引用:

Nakajima, J. (2011) "Time-varying parameter VAR model with stochastic volatility: An overview of methodology and empirical applications" Monetary and Economic Studies, 29, 107-142.

严禁私自将本代码用于商业目的!违者必究!

如需获取代码压缩包请私信

这篇关于TVP-VAR模型MATLAB代码【增加时间标签、三维脉冲响应图、sa2参数输出】(企研数据修改自Nakajima(2011))的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/624452

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

服务器集群同步时间手记

1.时间服务器配置(必须root用户) (1)检查ntp是否安装 [root@node1 桌面]# rpm -qa|grep ntpntp-4.2.6p5-10.el6.centos.x86_64fontpackages-filesystem-1.41-1.1.el6.noarchntpdate-4.2.6p5-10.el6.centos.x86_64 (2)修改ntp配置文件 [r

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

hdu1240、hdu1253(三维搜索题)

1、从后往前输入,(x,y,z); 2、从下往上输入,(y , z, x); 3、从左往右输入,(z,x,y); hdu1240代码如下: #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#inc

hdu4826(三维DP)

这是一个百度之星的资格赛第四题 题目链接:http://acm.hdu.edu.cn/contests/contest_showproblem.php?pid=1004&cid=500 题意:从左上角的点到右上角的点,每个点只能走一遍,走的方向有三个:向上,向下,向右,求最大值。 咋一看像搜索题,先暴搜,TLE,然后剪枝,还是TLE.然后我就改方法,用DP来做,这题和普通dp相比,多个个向上

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G