TVP-VAR模型MATLAB代码【增加时间标签、三维脉冲响应图、sa2参数输出】(企研数据修改自Nakajima(2011))

本文主要是介绍TVP-VAR模型MATLAB代码【增加时间标签、三维脉冲响应图、sa2参数输出】(企研数据修改自Nakajima(2011)),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、TVP-VAR模型与常用代码简介

【代码已修改完善,详见评论区】TVP-VAR模型(Time-Varying Parameter Vector AutoRegression,时变参数向量自回归模型)是在VAR模型的基础上拓展而来的模型,其假定系数矩阵和协方差矩阵是时变的,使得模型可以捕捉经济结构随时间变化的过程。

日本学者中岛上智(Jouchi Nakajima)于2011年发表的Time-Varying Parameter VAR Model with Stochastic Volatility: An Overview of Methodology and Empirical Applications是TVP-VAR领域的经典文献,其同时在个人网站上(https://sites.google.com/site/jnakajimaweb/)分享了论文中估计TVP-VAR模型所用的Oxmetrics和MATLAB程序代码,由于OxMetrics软件较为小众,因此很多人会选择使用更为熟悉的MATLAB版本的代码。

中岛上智教授分享的代码上一次更新时间为2020年5月1日,然而MATLAB版本的代码相比OxMetrics存在部分美中不足的地方,即MATLAB版本的代码无法显示现实的时间点,只能显示其在样本数据中的顺序,且MATLAB的作图限制导致其最多允许四条曲线叠加,如果想同时观察四种以上不同情况,难度比较大。

二、我们的工作

针对上述情况,我们谨慎修改了中岛上智教授发布的MATLAB版本的TVP-VAR模型代码,允许用户补充时间标签数据并将其显示出来,同时添加了生成三维脉冲响应图形的功能;针对许多人反应的缺少sa2参数的问题,我们谨慎添加了sa2参数结果的汇报需要声明的是,我们并未修改任何估计方法或参数,以确保结果的准确无误

如需获取代码压缩包请私信

以下为增加了sa2参数的汇报结果对比:

效果对比1:

效果对比2:

以下为原始输出结果和修改后输出结果的对比:

效果对比3:

效果对比4:

效果对比6:

效果对比5:

以下为部分三维脉冲响应图形的展示:

三、使用说明

  1. 中岛上智教授提供了样例数据,请严格按照样例数据的格式将要估计的数据存入EXCEL表中,每一列存储一个变量,左上角不留空白,且表中除数据外不存在多余的空白行,否则会导致估计出错;

  1. 例如,在中岛教授提供的tvpvar_ex.xlsx中,总共有124期、共三个变量的数据,存储在A1-C124的范围内的单元格中,如果存在空白行,则可能导致MATLAB在载入数据时扩大读取范围,如将A1-D200范围内的单元格一并读入,最终导致参数估计失败;

  1. 我们仿照并补充了中岛上智教授的样例数据所对应的时间标签数据,存储在tvpvar_ex_time.xlsx的A1-A124范围内的单元格中,EXCEL表中同样不允许存在多余的空白行;

  1. 时间格式等参数请参阅MATLAB的相关文档;

  1. tvpvar_m文件夹中为中岛教授的原始代码,tvpvar_m_modified文件夹中为修改后的代码,本版本代码仅修改了以下文件:drawimp.m;mcmc.m;tvpvar_ex1.m;tvpvar_ex2.m;

  1. sa2参数的汇报功能由团队成员添加,如存疑可以自行删去。

四、特别声明

本代码仅是对中岛上智教授工作成果的少量修饰,代码本身仍然是中岛上智教授的工作成果,如果使用了本代码,请按如下规范引用:

Nakajima, J. (2011) "Time-varying parameter VAR model with stochastic volatility: An overview of methodology and empirical applications" Monetary and Economic Studies, 29, 107-142.

严禁私自将本代码用于商业目的!违者必究!

如需获取代码压缩包请私信

这篇关于TVP-VAR模型MATLAB代码【增加时间标签、三维脉冲响应图、sa2参数输出】(企研数据修改自Nakajima(2011))的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/624452

相关文章

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

Python基于wxPython和FFmpeg开发一个视频标签工具

《Python基于wxPython和FFmpeg开发一个视频标签工具》在当今数字媒体时代,视频内容的管理和标记变得越来越重要,无论是研究人员需要对实验视频进行时间点标记,还是个人用户希望对家庭视频进行... 目录引言1. 应用概述2. 技术栈分析2.1 核心库和模块2.2 wxpython作为GUI选择的优

Java实现时间与字符串互相转换详解

《Java实现时间与字符串互相转换详解》这篇文章主要为大家详细介绍了Java中实现时间与字符串互相转换的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、日期格式化为字符串(一)使用预定义格式(二)自定义格式二、字符串解析为日期(一)解析ISO格式字符串(二)解析自定义

Spring Boot 3.4.3 基于 Spring WebFlux 实现 SSE 功能(代码示例)

《SpringBoot3.4.3基于SpringWebFlux实现SSE功能(代码示例)》SpringBoot3.4.3结合SpringWebFlux实现SSE功能,为实时数据推送提供... 目录1. SSE 简介1.1 什么是 SSE?1.2 SSE 的优点1.3 适用场景2. Spring WebFlu

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

java之Objects.nonNull用法代码解读

《java之Objects.nonNull用法代码解读》:本文主要介绍java之Objects.nonNull用法代码,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录Java之Objects.nonwww.chinasem.cnNull用法代码Objects.nonN

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

MySQL大表数据的分区与分库分表的实现

《MySQL大表数据的分区与分库分表的实现》数据库的分区和分库分表是两种常用的技术方案,本文主要介绍了MySQL大表数据的分区与分库分表的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. mysql大表数据的分区1.1 什么是分区?1.2 分区的类型1.3 分区的优点1.4 分