【移动机器人】基于JADE改进差分算法的多AGV路径规划

2024-01-19 19:50

本文主要是介绍【移动机器人】基于JADE改进差分算法的多AGV路径规划,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  最近帮同学做个东西,但是问题在于是之前从没接触过的领域–移动机器人轨迹规划,虽然也是搞机器人的,但是对 AGV 那边的情况是一无所知,这次能完成也算是挑战成功。此次任务目的是多辆AGV小车搬运货物,保证搬运总时间最短并且小车与货物之间,小车与小车之间无碰撞。

0 引言

  单 AGV 的路径规划是基础,单 AGV 的路径规划是指在已知起点和终点,所在环境地图存在多个货物的情况下,为存取货物的 AGV 规划一条符合要求的高效且最优路径。所以需要研究的问题有两个:AGV 运行环境建模和 AGV 路径规划算法
  而在实际应用中,因为单台 AGV 运输量有限,不能满足多任务高效的运输任务。所以在大多数仓库中,多 AGV 运输是必不可少的。AGVS 系统调度可以概括为:在一个仓库中,有多个货物放在不同起始位置,需要使用多个 AGV 将这些货物运输到不同的目标位置,并使得整体运输效率保持较高水平。多 AGV 调度系统在运行过程中需要解决的问题:AGVS 的路径规划、多任务的分配、动态的调度规划

1 地图环境建模

  采用栅格地图法作为 AGV 的运行环境,其原理是建立一个二维数组,用不同的数值代表不同的含义,基于任务要求,建立好后的栅格地图如下:


  多AGV运行环境图包括出发区、充电区、监测区、货物A的两个生产区、货物B的三个生产区、货物A的两个入库点,货物B的两个入库点。货物的颜色代表了对应颜色的小车需要完成的任务,本文的研究场景为:多 AGV 在接收到搬运任务后,会按照规划好的最优拣选路径从当前位置出发,前往货物点取货物,再送到对应的出货站台,然后前往下一个货物点取货物,再去对应的出货站台,在执行完所有搬运任务后,返回初始位置。

2 AGVS的路径规划算法

  A*算法是一种全局规划算法,可以根据给定的起点和目标点的位置在全局的地图上规划出一条最优路径。A*算法是将地图虚拟化,划分成一个个小方块,从起点开始搜索周围的点,然后选出一个新的点作为起点进行搜索,重复进行该过程直到找到终点。其优点是能够实现静态环境中的最优路径搜索,由于评价函数的存在,可以减少对边缘节点的搜索,因此选用A*算法作为路径规划的算法。
  传统的 A*算法主要将总长度最短作为优化目标。但一味的追求长度最短,将会导致 AGV 在行驶过程中频繁的转向,由于转弯会进行加速和减速的过程,时间成本要比直线行驶高出许多,而且使整体路径不够平滑。针对此问题,其中一个改进策略是在原有的 A*算法启发函数上增加转弯代价,以减少一些不必要的转弯。改进后的 A*算法为
f ( n ) = g ( n ) + h ( n ) + k f\left( n \right) =g\left( n \right) +h\left( n \right) +k f(n)=g(n)+h(n)+k式中, h ( n ) h\left( n \right) h(n) 是启发函数,采用曼哈顿距离, k k k 是转弯代价。

3 动态的调度规划

  对于单 AGV 搬运来说,只用 A*算法能够满足任务要求,但当多个 AGV 在系统内同时运行时,如果只按照单车搬运路径规划算法对每个 AGV 的拣选路径进行规划,而没有考虑多个 AGV 之间的相互影响,则可能出现几台 AGV 之间发生冲突和死锁的现象,基于此,提出一种时间窗算法来解决此类问题。
  时间窗原理是 AGV 在通过某个节点或者某段路径时的时间段,根据节点或路径被 AGV 的占用情况来协调 AGV 的路径规划情况,合理安排 AGV 的行走路径和通过各节点或路径的时间点,后一个 AGV 的路径规划建立在前面已经规划好路径的 AGV 的时间窗基础上,从而避免小车之间发生冲突。
  此时需要对 AGV 运作情况做一些假设:

  基于以上假设,可以得到小车在经过每个节点时的路径信息与时间信息,从而进行时间窗规划,避免小车冲突。

3.1 对于小车冲突类型的解决方式

  小车之间的冲突类型主要包括:节点冲突(十字冲突)、相向节点冲突、相向冲突三种

对应的冲突解决方式定义如下:


然后编写代码进行实现以上定义即可,这里不再赘述。另外,随着任务量的增加,时间窗避障的算法能力也需要更高。

注: 在判断小车是需要水平避障还是垂直避障的时候,还需要在冲突点进行判断是否发生过转弯。

4 多任务的分配 - JADE算法

  排好顺序的任务合理的分配叫做多任务分配。通常来说,完成多任务分配的功能,首先需要明确任务分配的目标,可以使用 AGV 行驶最短路程作为单一指标,也可以使用 AGV 执行任务时间最少和距离最短等多重目标作为指标。这里采用任务总时间 T T T 作为指标
  在以上的寻优算法中进行考虑,由于LBPADE算法适用于多维函数,先排除。将其他三个函数在相同条件下进行测试,发现算法精度:MGDE>=JADE>RNODE. 由于一些原因,这里先采用JADE算法。
  JADE算法是一种优化算法,是DE算法的改进。JADE是通过使用可选的外部归档实施新的变异策略,外部归档利用历史数据提供进度方向信息。并以自适应方式更新控制参数 F,Cr 来提高优化性能,JADE与DE相似的地方不再赘述(初始化,交叉,选择),JADE只改变了变异阶段,另外还将F和Cr参数自适应了。
带外部存档的变异策略:DE/current-to-pbest with external archive:


上式中, x ~ r 2 , g \mathbf{\tilde{x}}_{r2,g} x~r2,g 表示选取自当前群体和外部归档的∪集中,即有一部分个体是从外部归档中选择的,外部归档与此时此刻的群体不相似,扩大了群体的多样性,避免陷入局部最优。归档操作非常简单,归档文件初始化为空。然后,在每代之后,将选择过程中失败的父解添加到存档中。如果归档大小超过某个阈值,则从归档中随机删除一些解决方案以使归档大小保持在某个值。
  然后对交叉因子 C R CR CR 和变异因子 F F F 进行参数自适应, C R CR CR 采用平均值策略, F F F 采用 Lehmer 均值策略,此处不细说。

5 仿真结果与分析

运行效果如下

由仿真结果可以看出,本次仿真达到了研究目的,仿真实验成功。


  JADE迭代曲线如下,种群规模50,在迭代至6次左右进入收敛状态,找到了最佳任务分配方案与最小花费时间值。


JADE算法寻优结果如下,输出了最优种群值与最小时间花费值。

总结

  本文以多 AGV 为研究对象,研究了多 AGV 在搬运作业中的路径规划问题,利用A*算法实现了多 AGV 的最短路径规划,同时引入时间窗算法,使得多 AGV 系统的冲突问题得以解决,最后利用优化算法JADE,对路径规划总时间进行寻优迭代,找到了最佳分配方案与最小花费时间,实现了多 AGV 系统的全局无冲突路径规划。

  通过此次学习,学到了路径规划算法A*找最短路径,时间窗算法避免小车冲突,优化算法迭代寻优(JADE、RNODE、LBPADE、MGDE),此次学习收获颇丰,感谢陈同学提供的机会同时也感谢自己。

这篇关于【移动机器人】基于JADE改进差分算法的多AGV路径规划的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/623492

相关文章

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

Linux修改pip和conda缓存路径的几种方法

《Linux修改pip和conda缓存路径的几种方法》在Python生态中,pip和conda是两种常见的软件包管理工具,它们在安装、更新和卸载软件包时都会使用缓存来提高效率,适当地修改它们的缓存路径... 目录一、pip 和 conda 的缓存机制1. pip 的缓存机制默认缓存路径2. conda 的缓

Windows系统下如何查找JDK的安装路径

《Windows系统下如何查找JDK的安装路径》:本文主要介绍Windows系统下如何查找JDK的安装路径,文中介绍了三种方法,分别是通过命令行检查、使用verbose选项查找jre目录、以及查看... 目录一、确认是否安装了JDK二、查找路径三、另外一种方式如果很久之前安装了JDK,或者在别人的电脑上,想

Python中Windows和macOS文件路径格式不一致的解决方法

《Python中Windows和macOS文件路径格式不一致的解决方法》在Python中,Windows和macOS的文件路径字符串格式不一致主要体现在路径分隔符上,这种差异可能导致跨平台代码在处理文... 目录方法 1:使用 os.path 模块方法 2:使用 pathlib 模块(推荐)方法 3:统一使

一文教你解决Python不支持中文路径的问题

《一文教你解决Python不支持中文路径的问题》Python是一种广泛使用的高级编程语言,然而在处理包含中文字符的文件路径时,Python有时会表现出一些不友好的行为,下面小编就来为大家介绍一下具体的... 目录问题背景解决方案1. 设置正确的文件编码2. 使用pathlib模块3. 转换路径为Unicod

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

MySQL9.0默认路径安装下重置root密码

《MySQL9.0默认路径安装下重置root密码》本文主要介绍了MySQL9.0默认路径安装下重置root密码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们... 目录问题描述环境描述解决方法正常模式下修改密码报错原因问题描述mysqlChina编程采用默认安装路径,

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1