【​电力电子在电力系统中的应用​】6 滞环电流控制的PWM整流器 + STATCOM整流器 + APF仿真

本文主要是介绍【​电力电子在电力系统中的应用​】6 滞环电流控制的PWM整流器 + STATCOM整流器 + APF仿真,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【仅供参考

【2023.06西南交大电力电子在电力系统中的应用】

目录

步骤一:基于滞环电流控制的PWM整流器仿真

1.1 仿真要求

1.2 仿真电路原理及设计

1.2.1 主电路的搭建

1.2.2 控制电路的搭建

1.3 波形分析

步骤二:从PWM整流器到STATCOM仿真

2.1 仿真要求

2.2 仿真电路设计

2.2.1 主电路的搭建

2.2.2 控制电路的搭建

步骤三:从STATCOM整流器到APF仿真

3.1 仿真要求

3.2 仿真电路设计

3.3 波形分析


步骤一:基于滞环电流控制的PWM整流器仿真

1.1 仿真要求

  1. 搭建三相两电平电压型PWM整流器主电路,网侧输入电压为三相工频380V,直流输出电压为750V,功率开关采用IGBT;
  2. 适用三相PLL模块dq模型检测电流有功无功、搭建三相电流滞环控制模块、直流电压PI控制模块,要求控制网侧功率因数为1;
  3. 仿真并分析网侧电压和电流波形、三相PWM整流器输入端口电压波形及输出直流电压波形;
  4. 给出直流负载突变时,前述电压和电流波形。

1.2 仿真电路原理及设计

1.2.1 主电路的搭建

        如图,网侧输入电压为三相工频380V,直流输出电压为750V,功率开关采用IGBT:

1.2.2 控制电路的搭建

        首先,根据控制模型:

        可得PWM变流器输出电压为:

        公式中的比例系数与微分可通过PI控制器近似实现,可得如下框图:

        相应simulink仿真电路如下:

        但是,该控制模型结构较为复杂,故直接简化,采用滞环电流比较的直接电流控制系统。这种系统结构简单,电流响应速度快,控制运算中未使用电路参数,系统鲁棒性好。

        其基本原理是把指令电流i*和实际输出电流i的偏差i*−i作为滞环比较器的输入。

        S1通时,i增大,滞环比较器输出为负;S2通时,i减小,滞环比较器输出为正;通过环宽为2ΔI的滞环比较器的控制,i在i*+ΔI和i*−ΔI的范围内,呈锯齿状地跟踪指令电流i*:

        在simulink中搭建三相电流滞环控制模块如下(指令电流为Iref,实际输出电流为I):

1.3 波形分析

        由所的波形可知,控制网侧功率因数近似为1。

        PI参数选择:kp: 0.565;ki: 0.765。

        通过step模块相加的跳变波形来控制背对背IGBT开关器件的开断,达到负载突变的效果(一个step模块于0.1s从0阶跃为1,另一个step模块于0.2s从0阶跃为-1,从而使负载阻值于0.1s时突变为原来的1/2,再于0.2s时突变为原来的阻值):

        网侧电压和电流波形、三相PWM整流器输入端口电压波形及输出直流电压波形如下(包含直流负载突变时的情况):

        由图可知,在直流负载阻值突变为原来一半时:输出直流电压稍有下降;网侧电压波形三相频率略有降低、幅值略有下降;网侧电流幅值上升;三相PWM整流器输入端口电压波形三相频率略有降低。

步骤二:从PWM整流器到STATCOM仿真

2.1 仿真要求

  1. 在PWM整流器基础上,增加无功负载;
  2. 增加负载无功电流的检测;
  3. 将PWM整流器的无功给定为0的模块,替换为负载无功电流检测模块的输出;
  4. 让PWM整流器补偿无功。

2.2 仿真电路设计

2.2.1 主电路的搭建

        在PWM整流器基础上,增加无功负载、增加负载无功电流的检测:

2.2.2 控制电路的搭建

        将PWM整流器的无功给定为0的模块,替换为负载无功电流检测模块的输出,让PWM整流器补偿无功,则1.2.2中的框图改变为:

        再结合滞环简化后,根据框图搭建simulink控制部分仿真电路如下:

        其中,LPF低通滤波器由两个filter模块和一个常数0组成:

步骤三:从STATCOM整流器到APF仿真

3.1 仿真要求

  1. 在STATCOM仿真基础上,增加谐波负载电流的检测;
  2. 将STATCOM整流器的谐波补偿指令电流加入的电流跟踪指令;
  3. 让变换器具有补偿谐波的功能。
  4. 给出负载突变补偿谐波和无功的结果

3.2 仿真电路设计

        对应框图如下:

        在STATCOM仿真基础上,增加谐波负载电流的检测; 将STATCOM整流器的谐波补偿指令电流加入的电流跟踪指令; 让变换器具有补偿谐波的功能:

3.3 波形分析

        负载突变补偿谐波和无功的结果:

        输出直流电压(响应速度快,无超调,负载突变时稳定性良好):

这篇关于【​电力电子在电力系统中的应用​】6 滞环电流控制的PWM整流器 + STATCOM整流器 + APF仿真的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/619954

相关文章

JavaScript中的isTrusted属性及其应用场景详解

《JavaScript中的isTrusted属性及其应用场景详解》在现代Web开发中,JavaScript是构建交互式应用的核心语言,随着前端技术的不断发展,开发者需要处理越来越多的复杂场景,例如事件... 目录引言一、问题背景二、isTrusted 属性的来源与作用1. isTrusted 的定义2. 为

Python调用另一个py文件并传递参数常见的方法及其应用场景

《Python调用另一个py文件并传递参数常见的方法及其应用场景》:本文主要介绍在Python中调用另一个py文件并传递参数的几种常见方法,包括使用import语句、exec函数、subproce... 目录前言1. 使用import语句1.1 基本用法1.2 导入特定函数1.3 处理文件路径2. 使用ex

Java操作PDF文件实现签订电子合同详细教程

《Java操作PDF文件实现签订电子合同详细教程》:本文主要介绍如何在PDF中加入电子签章与电子签名的过程,包括编写Word文件、生成PDF、为PDF格式做表单、为表单赋值、生成文档以及上传到OB... 目录前言:先看效果:1.编写word文件1.2然后生成PDF格式进行保存1.3我这里是将文件保存到本地后

将Python应用部署到生产环境的小技巧分享

《将Python应用部署到生产环境的小技巧分享》文章主要讲述了在将Python应用程序部署到生产环境之前,需要进行的准备工作和最佳实践,包括心态调整、代码审查、测试覆盖率提升、配置文件优化、日志记录完... 目录部署前夜:从开发到生产的心理准备与检查清单环境搭建:打造稳固的应用运行平台自动化流水线:让部署像

Linux中Curl参数详解实践应用

《Linux中Curl参数详解实践应用》在现代网络开发和运维工作中,curl命令是一个不可或缺的工具,它是一个利用URL语法在命令行下工作的文件传输工具,支持多种协议,如HTTP、HTTPS、FTP等... 目录引言一、基础请求参数1. -X 或 --request2. -d 或 --data3. -H 或

在Ubuntu上部署SpringBoot应用的操作步骤

《在Ubuntu上部署SpringBoot应用的操作步骤》随着云计算和容器化技术的普及,Linux服务器已成为部署Web应用程序的主流平台之一,Java作为一种跨平台的编程语言,具有广泛的应用场景,本... 目录一、部署准备二、安装 Java 环境1. 安装 JDK2. 验证 Java 安装三、安装 mys

Python中构建终端应用界面利器Blessed模块的使用

《Python中构建终端应用界面利器Blessed模块的使用》Blessed库作为一个轻量级且功能强大的解决方案,开始在开发者中赢得口碑,今天,我们就一起来探索一下它是如何让终端UI开发变得轻松而高... 目录一、安装与配置:简单、快速、无障碍二、基本功能:从彩色文本到动态交互1. 显示基本内容2. 创建链

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

java中VO PO DTO POJO BO DO对象的应用场景及使用方式

《java中VOPODTOPOJOBODO对象的应用场景及使用方式》文章介绍了Java开发中常用的几种对象类型及其应用场景,包括VO、PO、DTO、POJO、BO和DO等,并通过示例说明了它... 目录Java中VO PO DTO POJO BO DO对象的应用VO (View Object) - 视图对象

Go信号处理如何优雅地关闭你的应用

《Go信号处理如何优雅地关闭你的应用》Go中的优雅关闭机制使得在应用程序接收到终止信号时,能够进行平滑的资源清理,通过使用context来管理goroutine的生命周期,结合signal... 目录1. 什么是信号处理?2. 如何优雅地关闭 Go 应用?3. 代码实现3.1 基本的信号捕获和优雅关闭3.2