TMDB电影数据分析(下)

2024-01-18 13:44
文章标签 数据分析 电影 tmdb

本文主要是介绍TMDB电影数据分析(下),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

TMDB电影数据分析(下)

      本文对源自Kaggle TMDB电影数据集进行分析影响电影票房的因素,数据分析流程包含数据集概分析、数据清洗、数据统计以及分析影响电影票房的因素。影响票房因素可能是电影预算、电影类型、电影时长、受欢迎程度、电影评分,发行时间等有关系,通过具体数据进行分析影响票房的因素。

数据集概分析 以及 数据清洗

接上文TMDB电影数据分析(上)

数据统计

1、查看收入前十的电影信息

      初步猜测影响电影收入的因素是电影预算,电影类型,上映年份,电影时长,评分,参与评分次数,受欢迎程度等。下面我们找出电影收入最高的前十部电影的基本信息。
在这里插入图片描述

      第一行代码调用sort_values()方法针对revenue字段进行降序排列并取前10行记录赋值给top10变量。该变量的值是一份DataFrame表格,一共有11行,第一行是列标题,剩下10行是电影收入排名前十的电影信息。第二行代码输出top10表格中的buget、genres、original_title等字段,结果发现电影收入排名前十的电影预算相对高,genres字段中id为12、name为Adventure的电影和id为28、name为Action的电影占比较大,release_date字段中显示上映年份基本分布在2000年后,vote_count字段表明参与评分次数相对充足,从vote_average字段看出收入高的电影评分不低,而popularity字段显示高收入电影的受欢迎程度。

2、计算收入与其他字段相关系数

      第一行代码在原数据集中增加一个release_year字段,数据集中提供了电影上映日期,但release_data字段值的数据类型不是日期类型,使用DataFrame的to_datatime()函数将指定格式转为日期格式,使用year属性获取日期中的年份作为新增字段的值。为了验证猜测,第二行代码中调用DataFrame的corr()函数计算budget、release_year、runtime、popularity、vote_average、vote_count等字段与revenue(电影收入)字段的相关性,获取发现revenue字段与budget、popularity及vote_count字段相关系数分别为0.70、0.60及0.76,具有高相关性,revenue字段与runtime、release_year、vote_average字段相关系数分别为0.23、0.14、0.18,具有低相关性。
在这里插入图片描述

3、查看电影年份分布

      首先调用DataFrame中的value_counts()方法对release_year字段值进行频数统计,得出各个年度发行的电影数量,数据集中电影发行年份自1916年起,包含89个年份的电影信息。
在这里插入图片描述

      通过绘制直方图直观看出电影在各年度的分布情况,如下图所示。
在这里插入图片描述

      从图中可以看出,电影发行年份集中在2000-2016年之间。

4、查看电影时长分布

      统计不同时长电影的数量,通过数据可以看出数据集中记录的电影时长总共有136个以及不同时长电影的数量。
在这里插入图片描述

      通过直方图可以直观看出电影时长集中分布在80-130之间,其中时长在90-110的电影数量占比较大。
在这里插入图片描述

5、查看预算分布

在这里插入图片描述

      数据集中低预算电影占比较大,预算集中在0至0.5x108

6、查看评分分布

在这里插入图片描述

      电影的评分集中分布在5-7分

7、查看评论次数分布

在这里插入图片描述

      数据集中绝大多数电影评论次数低于2000,其中评论次数在500以内评论次数占比最大。

影响收入的因素分析

1、绘制电影收入与影响因子散点图

      下面的代码绘制budget、release_year、runtime、popularity、vote_average、vote_count等字段与revenue字段的散点图。Matplotlib.pyplot模块参数可用plt.rcParams[‘配置参数’]=[修改值]进行修改默认配置,rcParams即run configuration parameters运行配置参数。第一行代码修改配置参数中的字体(font)为黑体(SimHei),是为了在图中可以正常显示中文。第三行代码使用Matplotlib.pyplot模块提供的subplots()函数返回一个元组,包括一个图形对象和所有的axes对象作为元素的ndarray对象,ndarray是2行3列的矩阵,每一个axes对象通过索引进行访问,索引下标从0开始。为每一个axes对象调用scatter()方法绘制散点图,并调用set_title()方法为每个axes对象增加标题。完成子图绘制后,代码第7行调用suptitle()方法为fig对象增加一个标题。效果如下图所示;

在这里插入图片描述
在这里插入图片描述

      上图的第一行标题为budget、popularrity、vote_count的三个子图能更可以直观看出,budget、popularrity、vote_count字段与revenue字段呈线性分布,意味着随影响因子增长,收入整体均呈增长趋势。而第二行标题为vote_average、runtime、release_year的三个子图表明,vote_average、runtime、release_year字段与revenue字段没有明显的线性关系。

2、分组分析电影收入与影响因子的关系

      由于电影发行时间集中在2000年以后,为了更好研究影响电影票房的因素,我们针对2001年至2015年发布的电影数据做进一步分析。

      首先,提取出发行年份在2001年至2015年的所有电影,保存到movies中,筛选后数据还有2103条记录。
在这里插入图片描述

      电影中数据记录了2001至2015总共15年的电影数据,时间跨度可能会相对大一些,按照年份进行分组,以每5年作为一组,将电影数据分成三组,针对每一组数据分析影响电影票房的因素。
在这里插入图片描述

      接下来,使用cut()方法将电影票房按照四分位点划分为四个等级,分别为’Low’, ‘Medium’, ‘Moderately High’, ‘High’,也即“低”、“中下”、“中上”和“高”。
在这里插入图片描述

      划分等级后,按照revenueclass、 fiveyearclass字段对数据进行分组,取出各组数据的中位数,保存到变量d_summary中。
在这里插入图片描述

      按年份分组后,得到三组数据,分别为‘2001-2005年’,‘2006-2010年’,‘2011-2015年’,针对每一组数据进行分析,随着收入越高,对应的预算越高,受欢迎程度越高,评论次数越多,电影时长、评分情况表现不明显。下面通过绘制条形图可以更直观的显示影响收入的因素。

      下面代码调用matplotlib.pyplot模块中bar()函数绘制电影收入与预算、受欢迎度、评论次数、评分、时长、发行年份之间关系的条形图。
在这里插入图片描述

在这里插入图片描述

      上图中含有6幅图,图中横坐标表示收入等级,纵坐标表示影响因素,针对每一幅图,同一收入等级中有三根柱子,从左向右以此表示为第一个5年数据,即2001至2005年电影数据,第二个5年数据,即2006至2010年电影数据,第三个5年数据,即2011至2015年电影数据。第一行分别绘制收入与预算条形图、收入与受欢迎程度条形图、收入与评论次数条形图。从收入与受欢迎程度图像可以看出,三组5年数据,每一组数据均是当电影票房高时,对应受欢迎程度也高,当收入处于同一个等级时,随着时间的推移,电影受欢迎程度略微增高,可能电影受欢迎层度受时间影响,间接影响着电影票房。

      针对收入与预算条形图,对于每一组年份,预算对票房的影响比较明显,收入高的电影,对应预算也高,即随着预算增加,电影票房也增加。说明投资方在制片质量上具有保障性,外加对影片宣传力度大,使票房得以提高。另外,针对收入等级相同时,预算投入与时间没有直接关系,说明不会因为当时时代背景而影响电影预算投入。

      针对收入与评论次数条形图,电影票房受评论次数影响比较大,参与评论的次数多的电影,电影票房高。

      第二行分别绘制收入与评分条形图、收入与时长条形图、收入与年份条形图。从这三幅条形图可以看出,电影收入与电影评分、电影时长、电影发行年份的关联度不明显。说明评分高低、时长长短及上映年份与电影收入无关。

3、分析电影类型对电影收入的影响

      由于每一部电影类型可以兼有多种类型,数据集中genres字段值是以字典数据类型给出。定义一个counttype函数,以数据集作为参数,使用for循环遍历genres字段数据,函数返回值为以电影类型为键,电影类型数量为值构成键值对的字典。
在这里插入图片描述

      针对数据集数据统计各种类型电影数量,将统计结果绘制成条形图,可以更直观查看不同类型电影数量,发现Drama、Comedy是占比最多的。

在这里插入图片描述
在这里插入图片描述

      按照受欢迎程度进行排序,提取最受欢迎前100部电影。并统计最受欢迎的100部电影不同类型占比。由于每一部电影类型可以兼有多种类型,数据集中genres字段值是以字典数据类型给出。使用for循环遍历genres字段数据,并以电影类型为键,电影数目为值构成的键值对作为元素存储到moviestype字典中,得到最受欢迎前100部电影不同类型的数量。
在这里插入图片描述
在这里插入图片描述

      100部最受欢迎电影中,其中Adventure类型和Action类型占比较高。猜测Adventure类型和Action类型是最受欢迎的两类电影,电影类型会影响电影受欢迎程度。

      针对不同收入等级统计电影类型出现频数,并提取频数最多的前5种类型电影,绘制条形图,效果如下:
在这里插入图片描述

在这里插入图片描述

      Action、Adventure、Drama、Comedy、Thriller等类型电影在收入不同等级中占比都很高,考虑到Drama、Comedy在整体电影类型占比中基数比较大,可以猜测电影类型对电影票房具有一定影响,但影响不明显。电影票房可能与影片质量本身有密切关系。

      本博客采用TMDB电影数据集,记录了1919-2016年间电影4803组数据,从电影的评分、预算、受欢迎程度、评论次数、时长、类型以及票房等信息进行分析评价,主要有以下结论:

      (1) 电影评分主要集中在5-7分,电影评分与电影收入没有明显关联关系。说明评分高低不代表电影好坏,不一定能带来更好收益,可能有一大部分观众没有参与评分。

      (2) 电影受欢迎程度,电影预算及评论数量直接影响电影收入。说明电影拍摄前期在灯光、演员、道具、服饰、制作等方面投入较大,保证影片质量,另外收入高的影片,参与评论次数多,观众更受欢迎,说明可以电影宣传比较到位,宣传力度大。

      (3) 最受欢迎的电影类型是Adventure,Action,且收入最高的电影类型依然是Adventure,Action,说明电影类型对电影收入有一定影响,但影响不明显。推测可能与电影上映地区的文化有关。

      (4) 电影时长对电影收入影响不大,记录中电影时长集中分布在90-110分钟,推测原因是数据集中不同时长的数据量过少,体现不出时长和收入的关系,另外,收入高的电影时长比较适中,所以电影时长适中才能保证观众对电影满意,同时能够保证拍片质量,创造更多收益;时长过短,无法保证质量,过长影响观众的观感。

这篇关于TMDB电影数据分析(下)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/619183

相关文章

Python:豆瓣电影商业数据分析-爬取全数据【附带爬虫豆瓣,数据处理过程,数据分析,可视化,以及完整PPT报告】

**爬取豆瓣电影信息,分析近年电影行业的发展情况** 本文是完整的数据分析展现,代码有完整版,包含豆瓣电影爬取的具体方式【附带爬虫豆瓣,数据处理过程,数据分析,可视化,以及完整PPT报告】   最近MBA在学习《商业数据分析》,大实训作业给了数据要进行数据分析,所以先拿豆瓣电影练练手,网络上爬取豆瓣电影TOP250较多,但对于豆瓣电影全数据的爬取教程很少,所以我自己做一版。 目

win7下安装Canopy(EPD) 及 Pandas进行python数据分析

先安装好canopy,具体安装版本看自己需要那种,我本来是打算安装win764位的,却发现下载总是出现错误,无奈只能下载了32位的! https://store.enthought.com/downloads/#default 安装好之后,参考如下连接,进行检验: 之后再根据下面提供的连接进行操作,一般是没问题的! http://jingyan.baidu.com/article/5d6

「大数据分析」图形可视化,如何选择大数据可视化图形?

​图形可视化技术,在大数据分析中,是一个非常重要的关键部分。我们前期通过数据获取,数据处理,数据分析,得出结果,这些过程都是比较抽象的。如果是非数据分析专业人员,很难清楚我们这些工作,到底做了些什么事情。即使是专业人员,在不清楚项目,不了解业务规则,不熟悉技术细节的情况下。要搞清楚我们的大数据分析,这一系列过程,也是比较困难的。 我们在数据处理和分析完成后,一般来说,都需要形成结论报告。怎样让大

数据预处理与协同过滤推荐算法——从数据清洗到个性化电影推荐

推荐系统在现代应用中占据了重要地位,尤其在电影、音乐等个性化内容推荐中广泛使用。本文将介绍如何使用数据预处理、特征工程以及多种推荐算法(包括协同过滤、基于内容的推荐、混合推荐等)来实现电影推荐系统。通过Pandas、Scikit-learn、TensorFlow等工具,我们将展示如何从数据清洗开始,逐步实现各类推荐算法。  完整项目代码: 基于协同过滤的电影推荐系统 一、数据预处

下一代皮克斯:AI如何融合电影与游戏

故事是人类体验的核心,通过故事我们理解世界、寻找意义并与他人建立联系。技术的进步不断推动着故事叙述的形式,从迪士尼的多平面摄影机到皮克斯的3D图形技术,每一次技术革命都带来了故事叙述的新方式。 游戏:现代叙事的前沿 今天,有两个主要的趋势正在加速下一代叙事公司的诞生: 消费者转向互动媒体:过去三十年间,我们见证了消费者从传统的线性媒体(如电视和电影)向互动媒体(如游戏)的逐步迁移。对于Z世

结合Python与GUI实现比赛预测与游戏数据分析

在现代软件开发中,用户界面设计和数据处理紧密结合,以提升用户体验和功能性。本篇博客将基于Python代码和相关数据分析进行讨论,尤其是如何通过PyQt5等图形界面库实现交互式功能。同时,我们将探讨如何通过嵌入式预测模型为用户提供赛果预测服务。 本文的主要内容包括: 基于PyQt5的图形用户界面设计。结合数据进行比赛预测。文件处理和数据分析流程。 1. PyQt5 图形用户界面设计

使用AI大模型进行企业数据分析与决策支持

使用AI大模型进行企业数据分析与决策支持已成为现代企业管理的重要趋势。AI大模型凭借其强大的数据处理能力和智能分析功能,能够为企业提供精准、高效的数据分析服务,进而支持企业的决策过程。以下是使用AI大模型进行企业数据分析与决策支持的具体方式和优势: 一、AI大模型在数据分析中的应用 超级数据处理能力 海量数据处理:AI大模型能够同时处理海量数据,包括结构化数据、非结构化数据等,满足企业大规模

这位在做游戏的前电影导演,希望能变着法子讲故事,并给予玩家会心一击

从黎巴嫩到瑞典,从电影人到游戏从业者,这是一位“作者”开发者的冒险 这是又一名瑞典游戏开发者的故事。 区别于大多数安静内向的同行,Josef Fares 因为其张扬的个性而成为为玩家所熟知的开发界网红。他敢在 TGA 直播中脱口而出“F**k Oscar”,敢在开箱危机的风口浪尖为 EA 说话,他创作了两款极具个人风格的独立游戏——讲述兄弟在幻想世界里历险为父亲求解药的《兄弟:双子传说》(Br

AIGC与数据分析融合,引领商业智能新变革(TOP企业实践)

AIGC与数据分析融合,引领商业智能新变革(TOP企业实践) 前言AIGC与数据分析融合 前言 在当今数字化时代,数据已成为企业发展的核心资产,而如何从海量数据中挖掘出有价值的信息,成为了企业面临的重要挑战。随着人工智能技术的飞速发展,AIGC(人工智能生成内容)与数据分析的融合为企业提供了新的解决方案。 阿里巴巴作为全球领先的科技公司,一直致力于探索和应用前沿技术,以提升企业

技术培训 | 大数据分析处理与用户画像实践|预告

主题: 大数据分析处理与用户画像实践 时间: 5 月 11 日 20:00 —— 21:30 地点: QingCloud 技术分享群,文末有二维码。 讲师: 孔淼 诸葛io 创始人 & CEO 90 后连续创业者,曾任 37degree CTO ,在任 37degree CTO 期间,孔淼曾带领团队服务 CCTV 、海尔、聚美优品、宝马等知名企业,对大数据分析的技术与行业有深厚的理解