数据预处理与协同过滤推荐算法——从数据清洗到个性化电影推荐

2024-09-07 22:52

本文主要是介绍数据预处理与协同过滤推荐算法——从数据清洗到个性化电影推荐,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

推荐系统在现代应用中占据了重要地位,尤其在电影、音乐等个性化内容推荐中广泛使用。本文将介绍如何使用数据预处理、特征工程以及多种推荐算法(包括协同过滤、基于内容的推荐、混合推荐等)来实现电影推荐系统。通过Pandas、Scikit-learn、TensorFlow等工具,我们将展示如何从数据清洗开始,逐步实现各类推荐算法。

 完整项目代码:

基于协同过滤的电影推荐系统

一、数据预处理

数据预处理是机器学习中的关键步骤,它决定了模型能否正确理解数据。在本项目中,我们处理的电影数据具有多值类别型特征(如国家、语言、类型)、文本特征(如导演、演员等),以及数值型特征(如评分、票数等)。因此,合理的特征处理能够提升推荐效果。

1. 加载数据与处理缺失值

我们首先加载数据并对缺失值进行填充,确保数据完整性。

df.fillna({'rating': df['rating'].mean(),'vote': df['vote'].median(),'runtime': df['runtime'].median(),'country': "['Unknown']",'language': "['Unknown']",'genre': "['Unknown']",'director': "['Unknown']",'composer': "['Unknown']",'writer': "['Unknown']",'cast': "['Unknown']"
}, inplace=True)
2. 多值类别型特征的处理

对于国家、语言和类型等多值类别型特征,我们使用 MultiLabelBinarizer 进行独热编码,将其转换为模型能够处理的数值型数据。

mlb_country = MultiLabelBinarizer()
country_encoded = mlb_country.fit_transform(df['country'])
mlb_language = MultiLabelBinarizer()
language_encoded = mlb_language.fit_transform(df['language'])
mlb_genre = MultiLabelBinarizer()
genre_encoded = mlb_genre.fit_transform(df['genre'])
3. 文本特征的处理

对于电影的文本特征,如导演、演员等,我们使用 TfidfVectorizer 来生成TF-IDF向量。这种方法可以将文本数据转化为数值特征,以便后续分析和建模。

4. 数值型特征标准化

为了消除数值型特征的量纲差异,我们对评分、票数等特征进行标准化处理。

scaler = StandardScaler()
scaled_numeric_features = scaler.fit_transform(df[['year', 'rating', 'vote', 'runtime']])
5. 合并所有特征

将所有经过处理的特征合并,形成最终的特征矩阵。

processed_features = np.hstack([country_encoded, language_encoded, genre_encoded,cast_tfidf, scaled_numeric_features
])
二、推荐算法实现
1. 协同过滤算法

协同过滤是一种基于用户行为相似性的推荐方法。在此,我们首先创建用户-电影评分矩阵,并基于余弦相似度计算用户之间的相似度。

user_movie_ratings = df.pivot_table(index='user_id', columns='title', values='rating', fill_value=0)
similarity_matrix = cosine_similarity(user_movie_ratings)
similarity_matrix_df = pd.DataFrame(similarity_matrix, index=user_movie_ratings.index, columns=user_movie_ratings.index)

然后,利用相似用户的评分为目标用户推荐电影。

def recommend_movies(user_id, num_recommendations=5):user_ratings = user_movie_ratings.loc[user_id]unseen_movies = user_ratings[user_ratings == 0].index.tolist()weighted_ratings = np.dot(similarity_matrix_df[user_id].values, user_movie_ratings[unseen_movies].values) / similarity_matrix_df[user_id].sum()movie_scores = dict(zip(unseen_movies, weighted_ratings))return sorted(movie_scores.items(), key=lambda x: x[1], reverse=True)[:num_recommendations]
2. 基于内容的推荐

基于内容的推荐算法通过计算电影特征之间的相似性来推荐类似的电影。我们首先合并电影的文本特征(如类型、导演、演员),然后使用TF-IDF来计算相似度。

df['combined_features'] = df['kind'] + " " + df['genre'].apply(lambda x: " ".join(eval(x))) + " " + df['director'].fillna('') + " " + df['cast']
tfidf_vectorizer = TfidfVectorizer(stop_words='english')
tfidf_matrix = tfidf_vectorizer.fit_transform(df['combined_features'])
cosine_sim = cosine_similarity(tfidf_matrix)

然后,为特定电影生成基于内容的推荐。

def recommend_based_on_content(movie_title, k=5):similar_scores = cosine_sim_df[movie_title]top_items_indices = similar_scores.argsort()[-k-1:-1][::-1]return df['title'].iloc[top_items_indices]
3. 混合推荐算法

混合推荐算法结合了基于内容和协同过滤的优点。我们通过对内容相似度和协同过滤相似度加权平均来生成推荐列表。

def hybrid_recommendation(movie_title, user_rating, weight_content=0.5, k=5):content_scores = cosine_sim_df[movie_title]collaborative_scores = similarity_matrix_df[movie_title] * (user_rating - 2.5)hybrid_scores = (content_scores * weight_content + collaborative_scores * (1 - weight_content)).dropna()return hybrid_scores.sort_values(ascending=False).head(k)
4. 基于K-means的推荐

我们还可以使用K-means聚类算法对电影进行聚类,然后基于聚类结果推荐相似电影。

kmeans = KMeans(n_clusters=10, random_state=42)
df['cluster'] = kmeans.fit_predict(combined_features)
def recommend_movies_from_cluster(title):cluster_id = df[df['title'] == title]['cluster'].iloc[0]return df[df['cluster'] == cluster_id]['title'].tolist()
5. 基于神经网络的推荐

最后,我们使用神经网络模型来预测用户对电影的评分。我们使用Keras构建了一个简单的神经网络模型,并进行了训练和预测。

model = Sequential([Dense(128, activation='relu', input_dim=processed_features.shape[1]),Dropout(0.3),Dense(64, activation='relu'),Dropout(0.3),Dense(1, activation='linear')
])
model.compile(optimizer='adam', loss='mean_squared_error')
model.fit(processed_features, ratings, epochs=10, validation_split=0.2)

本文详细介绍了数据预处理、特征工程以及多种推荐算法的实现。我们展示了如何通过协同过滤、基于内容的推荐、混合推荐、K-means聚类及神经网络来构建个性化的电影推荐系统。通过结合这些方法,可以为用户提供更加精准且多样化的推荐内容。

这篇关于数据预处理与协同过滤推荐算法——从数据清洗到个性化电影推荐的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1146390

相关文章

MySQL InnoDB引擎ibdata文件损坏/删除后使用frm和ibd文件恢复数据

《MySQLInnoDB引擎ibdata文件损坏/删除后使用frm和ibd文件恢复数据》mysql的ibdata文件被误删、被恶意修改,没有从库和备份数据的情况下的数据恢复,不能保证数据库所有表数据... 参考:mysql Innodb表空间卸载、迁移、装载的使用方法注意!此方法只适用于innodb_fi

mysql通过frm和ibd文件恢复表_mysql5.7根据.frm和.ibd文件恢复表结构和数据

《mysql通过frm和ibd文件恢复表_mysql5.7根据.frm和.ibd文件恢复表结构和数据》文章主要介绍了如何从.frm和.ibd文件恢复MySQLInnoDB表结构和数据,需要的朋友可以参... 目录一、恢复表结构二、恢复表数据补充方法一、恢复表结构(从 .frm 文件)方法 1:使用 mysq

mysql8.0无备份通过idb文件恢复数据的方法、idb文件修复和tablespace id不一致处理

《mysql8.0无备份通过idb文件恢复数据的方法、idb文件修复和tablespaceid不一致处理》文章描述了公司服务器断电后数据库故障的过程,作者通过查看错误日志、重新初始化数据目录、恢复备... 周末突然接到一位一年多没联系的妹妹打来电话,“刘哥,快来救救我”,我脑海瞬间冒出妙瓦底,电信火苲马扁.

golang获取prometheus数据(prometheus/client_golang包)

《golang获取prometheus数据(prometheus/client_golang包)》本文主要介绍了使用Go语言的prometheus/client_golang包来获取Prometheu... 目录1. 创建链接1.1 语法1.2 完整示例2. 简单查询2.1 语法2.2 完整示例3. 范围值

Vue项目的甘特图组件之dhtmlx-gantt使用教程和实现效果展示(推荐)

《Vue项目的甘特图组件之dhtmlx-gantt使用教程和实现效果展示(推荐)》文章介绍了如何使用dhtmlx-gantt组件来实现公司的甘特图需求,并提供了一个简单的Vue组件示例,文章还分享了一... 目录一、首先 npm 安装插件二、创建一个vue组件三、业务页面内 引用自定义组件:四、dhtmlx

javaScript在表单提交时获取表单数据的示例代码

《javaScript在表单提交时获取表单数据的示例代码》本文介绍了五种在JavaScript中获取表单数据的方法:使用FormData对象、手动提取表单数据、使用querySelector获取单个字... 方法 1:使用 FormData 对象FormData 是一个方便的内置对象,用于获取表单中的键值

前端 CSS 动态设置样式::class、:style 等技巧(推荐)

《前端CSS动态设置样式::class、:style等技巧(推荐)》:本文主要介绍了Vue.js中动态绑定类名和内联样式的两种方法:对象语法和数组语法,通过对象语法,可以根据条件动态切换类名或样式;通过数组语法,可以同时绑定多个类名或样式,此外,还可以结合计算属性来生成复杂的类名或样式对象,详细内容请阅读本文,希望能对你有所帮助...

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为

Python爬虫selenium验证之中文识别点选+图片验证码案例(最新推荐)

《Python爬虫selenium验证之中文识别点选+图片验证码案例(最新推荐)》本文介绍了如何使用Python和Selenium结合ddddocr库实现图片验证码的识别和点击功能,感兴趣的朋友一起看... 目录1.获取图片2.目标识别3.背景坐标识别3.1 ddddocr3.2 打码平台4.坐标点击5.图

Java中实现订单超时自动取消功能(最新推荐)

《Java中实现订单超时自动取消功能(最新推荐)》本文介绍了Java中实现订单超时自动取消功能的几种方法,包括定时任务、JDK延迟队列、Redis过期监听、Redisson分布式延迟队列、Rocket... 目录1、定时任务2、JDK延迟队列 DelayQueue(1)定义实现Delayed接口的实体类 (