Python数据分析案例34——IMDB电影评论情感分析(Transformer)

本文主要是介绍Python数据分析案例34——IMDB电影评论情感分析(Transformer),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

电影评论的情感分析

案例背景

很多同学对电影系列的数据都比较喜欢,那我就补充一下这个最经典的文本分类数据集,电影情感评论分析。用神经网络做。对国外的英文评论文本进行分类,看是正面还是负面情感。


数据集介绍

数据集:IMDb网站的电影评论数据集.

这个数据集包含评论文本和标签,标签表示该评论是“正面的”(positive)还是“负面的”(negative).

数据集包括两个独立文件夹,一个是训练数据train, 另一个是测试数据test. 每个文件夹又都有两个子文件夹,一个叫做pos, 另一个叫做neg。pos文件夹包含所有正面的评论, 每条评论都是一个单独的文本文件, neg文件夹与之类似。

说实话,搞这么多文件夹和这么多txt文件看着麻烦,我还是一样,自己清洗和整理后,直接用excel装起来了,如下:

两个excel文件,一个训练集一个测试集,每个里面有25000条评论,其中又分为12500条正面和12500条负面,是一个很平衡的样本。

需要这个数据的全部代码的同学可以参考:电影数据


代码实现

预处理

导入包:

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
plt.rcParams['font.sans-serif'] = ['KaiTi']  #指定默认字体 SimHei黑体
plt.rcParams['axes.unicode_minus'] = False   #解决保存图像是负号'

读取数据,合并,展示前五行:

df_train=pd.read_csv('train.csv')
df_test=pd.read_csv('test.csv')
df=pd.concat([df_train,df_test]).reset_index(drop='True')
df.head()

 可以看到里面有一些“b”这种二进制留下的解码前缀,我们需要简单处理一下:

import re
def preprocess_text(s):# 解码字节字符串if isinstance(s, bytes):s = s.decode('utf-8')# 替换转义字符s = re.sub(r"\\n", " ", s)s = re.sub(r"\\'", "'", s)return s.strip().replace("b'",'').replace('b"','')
#应用预处理
df['text'] = df['text'].apply(preprocess_text)
df.head()

查看种类分布:

df['label'].value_counts().plot(kind='bar')

0是负面文本评论,1是正面,可以看到很均衡。

词向量转化

英文词汇自带空格,所以不需要向中文一样的去分词,直接构建词表,然后词向量化:

from os import listdir
from keras.preprocessing import sequence
from keras.preprocessing.text import Tokenizer
from tensorflow.keras.utils import to_categorical
from sklearn.model_selection import train_test_split
# 将文件分割成单字, 建立词索引字典     
tok = Tokenizer(num_words=10000)
tok.fit_on_texts(df['text'].to_numpy())
print("样本数 : ", tok.document_count)

查看词表前10 的词汇:

print({k: tok.word_index[k] for k in list(tok.word_index)[:10]})

将其变为数组,然后查看其长度分布:
 

X= tok.texts_to_sequences(df['text'].to_numpy())
#查看x的长度的分布
v_c=pd.Series([len(i) for i in X]).value_counts()
print(v_c[v_c>150])
v_c[v_c>150].plot(kind='bar',figsize=(12,5))

可以看到大部分评论长度都在120左右,我们选择将X统一到长度为200,多的去掉,少的用0补起来。

# 将序列数据填充成相同长度 
X= sequence.pad_sequences(X, maxlen=200)
Y=df['label'].to_numpy()
print("X.shape: ", X.shape)
print("Y.shape: ", Y.shape)

然后我们再将训练集和测试集分开,前面是直接拼接的,那这里我们直接顺序分割就行。

X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.5, shuffle=False)
X_train.shape,X_test.shape,Y_train.shape, Y_test.shape

y进行独立热编码:

Y_test_original=Y_test.copy()
Y_train = to_categorical(Y_train)
Y_test = to_categorical(Y_test)
Y= to_categorical(Y)

查看X和y的其中三个:

print(X_train[100:103])
print(Y_test[:3])
Y_test_original[:3]

数据没什么问题,我们可以构建神经网络进行训练了。


构建神经网络

导入包,自定义Transformer层和位置编码层。

from tensorflow.keras import layers
import tensorflow as tf
from tensorflow import keras
class TransformerEncoder(layers.Layer):def __init__(self, embed_dim, dense_dim, num_heads, **kwargs):super().__init__(**kwargs)self.embed_dim = embed_dimself.dense_dim = dense_dimself.num_heads = num_headsself.attention = layers.MultiHeadAttention(num_heads=num_heads, key_dim=embed_dim)self.dense_proj = keras.Sequential([layers.Dense(dense_dim, activation="relu"),layers.Dense(embed_dim),] )self.layernorm_1 = layers.LayerNormalization()self.layernorm_2 = layers.LayerNormalization()def call(self, inputs, mask=None):if mask is not None:mask = mask[:, tf.newaxis, :]attention_output = self.attention(inputs, inputs, attention_mask=mask)proj_input = self.layernorm_1(inputs + attention_output)proj_output = self.dense_proj(proj_input)return self.layernorm_2(proj_input + proj_output)def get_config(self):config = super().get_config()config.update({"embed_dim": self.embed_dim,"num_heads": self.num_heads,"dense_dim": self.dense_dim, })return config
class PositionalEmbedding(layers.Layer):def __init__(self, sequence_length, input_dim, output_dim, **kwargs):super().__init__(**kwargs)self.token_embeddings = layers.Embedding(input_dim=input_dim, output_dim=output_dim)self.position_embeddings = layers.Embedding(input_dim=sequence_length, output_dim=output_dim)self.sequence_length = sequence_lengthself.input_dim = input_dimself.output_dim = output_dimdef call(self, inputs):length = tf.shape(inputs)[-1]positions = tf.range(start=0, limit=length, delta=1)embedded_tokens = self.token_embeddings(inputs)embedded_positions = self.position_embeddings(positions)return embedded_tokens + embedded_positionsdef compute_mask(self, inputs, mask=None):return tf.math.not_equal(inputs, 0)def get_config(self):config = super().get_config()config.update({"output_dim": self.output_dim,"sequence_length": self.sequence_length,"input_dim": self.input_dim,})return config

导入层,和定义一些参数:

from keras.preprocessing import sequence
from keras.models import Sequential,Model
from keras.layers import Dense,Input, Dropout, Embedding, Flatten,MaxPooling1D,Conv1D,SimpleRNN,LSTM,GRU,Multiply,GlobalMaxPooling1D
from keras.layers import Bidirectional,Activation,BatchNormalization,GlobalAveragePooling1D,MultiHeadAttention
from keras.callbacks import EarlyStopping
from keras.layers.merge import concatenate
np.random.seed(0)  # 指定随机数种子  
#单词索引的最大个数10000,单句话最大长度200
top_words=10000  
max_words=200    #序列长度
embed_dim=128    #嵌入维度
num_labels=2   #2分类

构建模型:构建了14种模型

def build_model(top_words=top_words,max_words=max_words,num_labels=num_labels,mode='LSTM',hidden_dim=[64]):if mode=='RNN':model = Sequential()model.add(Embedding(top_words, input_length=max_words, output_dim=embed_dim, mask_zero=True))model.add(Dropout(0.25))model.add(SimpleRNN(hidden_dim[0]))  model.add(Dropout(0.25))   model.add(Dense(num_labels, activation="softmax"))elif mode=='MLP':model = Sequential()model.add(Embedding(top_words, input_length=max_words, output_dim=embed_dim))#, mask_zero=Truemodel.add(Flatten())model.add(Dropout(0.25))model.add(Dense(hidden_dim[0]))  model.add(Dropout(0.25))   model.add(Dense(num_labels, activation="softmax"))elif mode=='LSTM':model = Sequential()model.add(Embedding(top_words, input_length=max_words, output_dim=embed_dim))model.add(Dropout(0.25))model.add(LSTM(hidden_dim[0]))model.add(Dropout(0.25))   model.add(Dense(num_labels, activation="softmax"))elif mode=='GRU':model = Sequential()model.add(Embedding(top_words, input_length=max_words, output_dim=embed_dim))model.add(Dropout(0.25))model.add(GRU(hidden_dim[0]))model.add(Dropout(0.25))   model.add(Dense(num_labels, activation="softmax"))elif mode=='CNN':        #一维卷积model = Sequential()model.add(Embedding(top_words, input_length=max_words, output_dim=embed_dim, mask_zero=True))model.add(Dropout(0.25))model.add(Conv1D(filters=32, kernel_size=3, padding="same",activation="relu"))model.add(MaxPooling1D(pool_size=2))model.add(Flatten())model.add(Dense(hidden_dim[0], activation="relu"))model.add(Dropout(0.25))   model.add(Dense(num_labels, activation="softmax"))elif mode=='CNN+LSTM':model = Sequential()model.add(Embedding(top_words, input_length=max_words, output_dim=embed_dim))model.add(Dropout(0.25))    model.add(Conv1D(filters=32, kernel_size=3, padding="same",activation="relu"))model.add(MaxPooling1D(pool_size=2))model.add(LSTM(hidden_dim[0]))model.add(Dropout(0.25))   model.add(Dense(num_labels, activation="softmax"))elif mode=='BiLSTM':model = Sequential()model.add(Embedding(top_words, input_length=max_words, output_dim=embed_dim))model.add(Bidirectional(LSTM(64)))model.add(Dense(hidden_dim[0], activation='relu'))model.add(Dropout(0.25))model.add(Dense(num_labels, activation='softmax'))#下面的网络采用Funcional API实现elif mode=='TextCNN':inputs = Input(name='inputs',shape=[max_words,], dtype='float64')## 词嵌入使用预训练的词向量layer = Embedding(top_words, input_length=max_words, output_dim=embed_dim)(inputs)## 词窗大小分别为3,4,5cnn1 = Conv1D(32, 3, padding='same', strides = 1, activation='relu')(layer)cnn1 = MaxPooling1D(pool_size=2)(cnn1)cnn2 = Conv1D(32, 4, padding='same', strides = 1, activation='relu')(layer)cnn2 = MaxPooling1D(pool_size=2)(cnn2)cnn3 = Conv1D(32, 5, padding='same', strides = 1, activation='relu')(layer)cnn3 = MaxPooling1D(pool_size=2)(cnn3)# 合并三个模型的输出向量cnn = concatenate([cnn1,cnn2,cnn3], axis=-1)x = Flatten()(cnn) x = Dense(hidden_dim[0], activation='relu')(x)output = Dense(num_labels, activation='softmax')(x)model = Model(inputs=inputs, outputs=output)elif mode=='Attention':inputs = Input(name='inputs',shape=[max_words,], dtype='float64')x = Embedding(top_words, input_length=max_words, output_dim=embed_dim, mask_zero=True)(inputs)x = MultiHeadAttention(1, key_dim=embed_dim)(x, x,x)x = GlobalAveragePooling1D()(x)x = Dropout(0.2)(x)   x = Dense(32, activation='relu')(x)output = Dense(num_labels, activation='softmax')(x)model = Model(inputs=[inputs], outputs=output) elif mode=='MultiHeadAttention':inputs = Input(name='inputs',shape=[max_words,], dtype='float64')x = Embedding(top_words, input_length=max_words, output_dim=embed_dim, mask_zero=True)(inputs)x = MultiHeadAttention(8, key_dim=embed_dim)(x, x,x)x = GlobalAveragePooling1D()(x)x = Dropout(0.2)(x)   x = Dense(32, activation='relu')(x)output = Dense(num_labels, activation='softmax')(x)model = Model(inputs=[inputs], outputs=output)      elif mode=='Attention+BiLSTM':inputs = Input(name='inputs',shape=[max_words,], dtype='float64')x = Embedding(top_words, input_length=max_words, output_dim=embed_dim)(inputs)x = MultiHeadAttention(2, key_dim=embed_dim)(x, x,x)x = Bidirectional(LSTM(hidden_dim[0]))(x) x = Dense(64, activation='relu')(x)x = Dropout(0.2)(x)output = Dense(num_labels, activation='softmax')(x)model = Model(inputs=inputs, outputs=output)  elif mode=='BiGRU+Attention':inputs = Input(name='inputs',shape=[max_words,], dtype='float64')x = Embedding(top_words, input_length=max_words, output_dim=embed_dim)(inputs)x = Bidirectional(GRU(32,return_sequences=True))(x)x = MultiHeadAttention(2, key_dim=embed_dim)(x,x,x)x = Bidirectional(GRU(32))(x)x = Dropout(0.2)(x)output = Dense(num_labels, activation='softmax')(x)model = Model(inputs=[inputs], outputs=output) elif mode=='Transformer':inputs = Input(name='inputs',shape=[max_words,], dtype='float64')x = Embedding(top_words, input_length=max_words, output_dim=embed_dim, mask_zero=True)(inputs)x = TransformerEncoder(embed_dim, 32, 4)(x)x = GlobalMaxPooling1D()(x)x = Dropout(0.25)(x)outputs = Dense(num_labels, activation='softmax')(x)model = Model(inputs, outputs)elif mode=='PositionalEmbedding+Transformer':inputs = Input(name='inputs',shape=[max_words,], dtype='float64')x= PositionalEmbedding(sequence_length=max_words, input_dim=top_words, output_dim=embed_dim)(inputs)x = TransformerEncoder(embed_dim, 32, 4)(x)x = GlobalMaxPooling1D()(x)x = Dropout(0.5)(x)outputs = Dense(num_labels, activation='softmax')(x)model = Model(inputs, outputs)model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"])return model

这里构建了:“['MLP', 'CNN', 'RNN', 'LSTM', 'GRU', 'CNN+LSTM', 'BiLSTM', 'TextCNN', 'Attention', 'MultiHeadAttention', 'Attention+BiLSTM', 'BiGRU+Attention', 'Transformer', 'PositionalEmbedding+Transformer']”   14种模型,大家还可以任意组合自己想要的模型。

定义评价函数和画损失图函数:

#定义损失和精度的图,和混淆矩阵指标等等
from sklearn.metrics import confusion_matrix
from sklearn.metrics import classification_report
from sklearn.metrics import cohen_kappa_score
def plot_loss(history):# 显示训练和验证损失图表plt.subplots(1,2,figsize=(10,3))plt.subplot(121)loss = history.history["loss"]epochs = range(1, len(loss)+1)val_loss = history.history["val_loss"]plt.plot(epochs, loss, "bo", label="Training Loss")plt.plot(epochs, val_loss, "r", label="Validation Loss")plt.title("Training and Validation Loss")plt.xlabel("Epochs")plt.ylabel("Loss")plt.legend()  plt.subplot(122)acc = history.history["accuracy"]val_acc = history.history["val_accuracy"]plt.plot(epochs, acc, "b-", label="Training Acc")plt.plot(epochs, val_acc, "r--", label="Validation Acc")plt.title("Training and Validation Accuracy")plt.xlabel("Epochs")plt.ylabel("Accuracy")plt.legend()plt.tight_layout()plt.show()
def plot_confusion_matrix(model,X_test,Y_test_original):#预测概率prob=model.predict(X_test) #预测类别pred=np.argmax(prob,axis=1)#数据透视表,混淆矩阵pred=pd.Series(pred)Y_test_original=pd.Series(Y_test_original)table = pd.crosstab(Y_test_original, pred, rownames=['Actual'], colnames=['Predicted'])#print(table)sns.heatmap(table,cmap='Blues',fmt='.20g', annot=True)plt.tight_layout()plt.show()#计算混淆矩阵的各项指标print(classification_report(Y_test_original, pred))#科恩Kappa指标print('科恩Kappa'+str(cohen_kappa_score(Y_test_original, pred)))def evaluation(y_test, y_predict):accuracy=classification_report(y_test, y_predict,output_dict=True)['accuracy']s=classification_report(y_test, y_predict,output_dict=True)['weighted avg']precision=s['precision']recall=s['recall']f1_score=s['f1-score']#kappa=cohen_kappa_score(y_test, y_predict)return accuracy,precision,recall,f1_score #, kappa

定义训练函数

#定义训练函数
df_eval=pd.DataFrame(columns=['Accuracy','Precision','Recall','F1_score'])
def train_fuc(max_words=max_words,mode='BiLSTM+Attention',batch_size=64,epochs=10,hidden_dim=[64],show_loss=True,show_confusion_matrix=True):#构建模型model=build_model(max_words=max_words,mode=mode,hidden_dim=hidden_dim)print(model.summary())es = EarlyStopping(patience=3)history=model.fit(X_train, Y_train,batch_size=batch_size,epochs=epochs,validation_split=0.1, verbose=1,callbacks=[es])print('——————————-----------------——训练完毕—————-----------------------------———————')# 评估模型#loss, accuracy = model.evaluate(X_test, Y_test)  ;  print("测试数据集的准确度 = {:.4f}".format(accuracy))prob=model.predict(X_test) ;  pred=np.argmax(prob,axis=1)score=list(evaluation(Y_test_original, pred))df_eval.loc[mode,:]=scoreif show_loss:plot_loss(history)if show_confusion_matrix:plot_confusion_matrix(model=model,X_test=X_test,Y_test_original=Y_test_original)

我首先命名了一个df_eval的数据框,用来存放模型预测的效果的评价指标。我们采用准确率,精确值,召回率,F1值四个分类问题常用的指标来进行评价。

我这个训练函数里面包括了很多东西,可以打印模型的信息,然后展示模型的训练,对模型训练过程的训练集和验证集的损失变化都画了图,然后对于预测结果的混淆矩阵和其热力图都进行了展示,还储存了评价指标。
 

初始化参数

top_words=10000
max_words=200
batch_size=64
epochs=10
hidden_dim=[64]
show_confusion_matrix=True
show_loss=True

 上面构建这么多函数,是方便下面进行训练的,下面的训练代码就很简单了,一行代码就全有。

train_fuc(mode='MLP',batch_size=batch_size,epochs=epochs)

训练其他模型只需要改mode参数就行

train_fuc(mode='CNN',batch_size=batch_size,epochs=epochs)

 这里太多了,就不一一展示了,直接一起训练,然后看看所有模型的效果对比:

train_fuc(mode='RNN',batch_size=batch_size,epochs=8)
train_fuc(mode='LSTM',epochs=epochs)
train_fuc(mode='GRU',epochs=epochs)
train_fuc(mode='CNN+LSTM',epochs=epochs)
train_fuc(mode='BiLSTM',epochs=epochs)
train_fuc(mode='TextCNN',epochs=3)
train_fuc(mode='Attention',epochs=4)
train_fuc(mode='MultiHeadAttention',epochs=3)
train_fuc(mode='Attention+BiLSTM',epochs=8)
train_fuc(mode='BiGRU+Attention',epochs=4)
train_fuc(mode='Transformer',epochs=3)
train_fuc(mode='PositionalEmbedding+Transformer',batch_size=batch_size,epochs=3)

模型评价

df_eval.assign(s=df_eval.sum(axis=1))#['s'].idxmax()

可以看到这个数据集上,TextCNN模型效果较为优良。

  • 多层感知机 (MLP) 的表现在所有指标上都是相对均衡的。
  • 卷积神经网络 (CNN) 在精确度和F1分数上稍微高于其他指标。
  • 递归神经网络 (RNN) 在所有指标上的表现都不是很好,尤其是在准确度和召回率上。
  • 长短期记忆网络 (LSTM) 在准确度和F1分数上表现良好。
  • 门控循环单元 (GRU) 在所有指标上的表现都很均衡,是性能较好的模型之一。
  • CNN+LSTM 组合模型在准确度和F1分数上表现较好。
  • 双向LSTM (BiLSTM) 的表现和单向的LSTM类似,但是在所有指标上略有下降。
  • TextCNN 在精确度和F1分数上表现出色,说明它在分类正确的同时也保持了较高的相关性。
  • Attention 机制的加入提供了相对较高的精确度,但在其他指标上的提升不是很显著。
  • MultiHeadAttention 相比单一的Attention机制在准确度和召回率上略有下降。
  • Attention+BiLSTM 的组合模型在所有指标上均有较好的表现,尤其是在F1分数上,这表明它在精确度和召回率之间取得了很好的平衡。
  • BiGRU+Attention 在所有指标上也显示出良好的性能,尤其是在准确度和F1分数上,这表明它有效地结合了GRU的时序处理能力和Attention机制的聚焦能力。
  • Transformer 模型在所有指标上都有不错的表现,尤其是在F1分数上,表明它在精确度和召回率之间取得了良好的平衡。
  • PositionalEmbedding+Transformer 在所有指标上有较好的表现,这可能表明它在捕捉长距离依赖和上下文信息方面非常有效。

画出对应的柱状图:

bar_width = 0.4
colors=['c', 'b', 'g', 'tomato', 'm', 'y', 'lime', 'k','orange','pink','grey','tan','gold','r']
fig, ax = plt.subplots(2,2,figsize=(10,8),dpi=128)
for i,col in enumerate(df_eval.columns):n=int(str('22')+str(i+1))plt.subplot(n)df_col=df_eval[col]m =np.arange(len(df_col))plt.bar(x=m,height=df_col.to_numpy(),width=bar_width,color=colors)#plt.xlabel('Methods',fontsize=12)names=df_col.indexplt.xticks(range(len(df_col)),names,fontsize=10)plt.xticks(rotation=40)plt.ylabel(col,fontsize=14)plt.tight_layout()
#plt.savefig('柱状图.jpg',dpi=512)
plt.show()

其实模型们都差不了太多,大概都在85%左右,就RNN离谱一些。。。


模型预测

我们单独拿Transformer模型进行训练,我们选择使用它,单独拿出来在所有的数据集上进行训练,然后对新来的新闻进行预测看看效果。然后去预测新文本。

model=build_model(max_words=max_words,mode='PositionalEmbedding+Transformer',hidden_dim=hidden_dim)
history=model.fit(X,Y,batch_size=batch_size,epochs=3,verbose=0)

再来一个新的电影评论的文本,怎么预测呢?

new_txt='''This latest movie is a cinematic masterpiece! It brilliantly blends stunning visuals with a captivating storyline. 
The performances are exceptional, capturing the essence of each character beautifully. 
It's a rare film that not only entertains but also provokes deep thought and emotional engagement.
A must-see for movie lovers!'''

 这么多感叹号和love,一看就是正面情感。。

我们来试试,要先转化为和前面一样的向量。

自定义一个类别处理函数

def predict_newkind(new_txt,token=tok):dic={0: '负面', 1: '正面'}new_text_seq = tok.texts_to_sequences([new_txt])new_text_seq_padded = sequence.pad_sequences(new_text_seq, maxlen=200)predictions = model.predict(new_text_seq_padded)predicted_class = np.argmax(predictions, axis=1)return dic[predicted_class[0]]

预测看看

predict_newkind(new_txt)

没问题,很准确!

再来个负面评论 看看:

new_txt='''Unfortunately, this recent film falls short of expectations. Despite a promising premise, the plot is poorly executed and lacks 
depth. The performances feel forced and fail to connect with the audience. Additionally, the over-reliance on special effects over substance
makes it a forgettable experience. It's a disappointing entry in what could have been an exciting film series.
'''
predict_newkind(new_txt)

不错!


模型储存

可以把构建的模型和词表进行保存,下次就不用再训练了,可以直接用。

import pickle
from tensorflow.keras.models import save_model
# 保存Tokenizer
with open('tokenizer.pickle', 'wb') as handle:pickle.dump(tok, handle, protocol=pickle.HIGHEST_PROTOCOL)
model.save('my_model.h5')  # 保存模型到HDF5文件

下次要用的话,直接载入:

from tensorflow.keras.models import load_model
import pickle
with open('tokenizer.pickle', 'rb') as handle:tok = pickle.load(handle)
model = load_model('my_model.h5', custom_objects={'PositionalEmbedding': PositionalEmbedding,'TransformerEncoder':TransformerEncoder})

大家还可以用自己的想法构建更多的模型,说不定可以得到更好的准确率。

我本人也测试过 KNN, 决策树,逻辑回归这种传统机器学习学的方法,效果比神经网络差多了....而且训练时间也长很多。

当然,这是英文的案例,不用分词什么的,想做中文的评论情感分类就可以参考我上一篇文章:新闻文本主题多分类


创作不易,看官觉得写得还不错的话点个关注和赞吧,本人会持续更新python数据分析领域的代码文章~(需要定制代码可私信)

这篇关于Python数据分析案例34——IMDB电影评论情感分析(Transformer)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/613624

相关文章

Python调用Orator ORM进行数据库操作

《Python调用OratorORM进行数据库操作》OratorORM是一个功能丰富且灵活的PythonORM库,旨在简化数据库操作,它支持多种数据库并提供了简洁且直观的API,下面我们就... 目录Orator ORM 主要特点安装使用示例总结Orator ORM 是一个功能丰富且灵活的 python O

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

Python Jupyter Notebook导包报错问题及解决

《PythonJupyterNotebook导包报错问题及解决》在conda环境中安装包后,JupyterNotebook导入时出现ImportError,可能是由于包版本不对应或版本太高,解决方... 目录问题解决方法重新安装Jupyter NoteBook 更改Kernel总结问题在conda上安装了

Python如何计算两个不同类型列表的相似度

《Python如何计算两个不同类型列表的相似度》在编程中,经常需要比较两个列表的相似度,尤其是当这两个列表包含不同类型的元素时,下面小编就来讲讲如何使用Python计算两个不同类型列表的相似度吧... 目录摘要引言数字类型相似度欧几里得距离曼哈顿距离字符串类型相似度Levenshtein距离Jaccard相

Python安装时常见报错以及解决方案

《Python安装时常见报错以及解决方案》:本文主要介绍在安装Python、配置环境变量、使用pip以及运行Python脚本时常见的错误及其解决方案,文中介绍的非常详细,需要的朋友可以参考下... 目录一、安装 python 时常见报错及解决方案(一)安装包下载失败(二)权限不足二、配置环境变量时常见报错及