(文章复现)梯级水光互补系统最大化可消纳电量期望短期优化调度模型matlab代码

本文主要是介绍(文章复现)梯级水光互补系统最大化可消纳电量期望短期优化调度模型matlab代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

参考文献:

[1]罗彬,陈永灿,刘昭伟等.梯级水光互补系统最大化可消纳电量期望短期优化调度模型[J].电力系统自动化,2023,47(10):66-75.

1.基本原理

1.1 目标函数

        考虑光伏出力的不确定性,以梯级水光互补系统的可消纳电量期望最大为目标,函数可表示为:

1.2约束条件

1.2.1 电站约束

1)水量平衡约束

2)水库水位约束

 3)初始水位和末水位控制

4)出库流量约束

5)电站出力约束

6)水位-库容关系

7)尾水位-泄流量关系

1.2.2 机组约束

1)机组出力约束

2)机组发电流量约束

3)机组振动区约束

4)机组开、停机持续时间约束

 

机组在调度期内的最大开机次数,以避免频繁开停机。

5)机组出力爬坡约束

6)机组出力波动限制约束

7)机组发电水头约束

8)水头损失函数

9)机组动力特性关系

1.2.3 电网约束

1)梯级水电出力范围约束

2)分区断面约束

从目标函数和分区断面约束可以看出,弃电量中未设置弃水、弃光的优先级,模型目标会使得梯级水电在允许出力范围内优先蓄水减发,以提升受阻断面内光伏消纳量,从而提升互补系统整体可消纳水平,但为保障电网供电支撑无法继续减发时,受到分区断面限制而造成弃光也不可避免。

2.模型求解

2.1 模型转换

        MILP模型构建的关键在于模型的线性化转换 ,所提模型非线性约束包括式(10)、式(11)、式(16)、式(19)、式(21)和式(22)。其中,水位-库容、尾水位-泄流量以及水头损失函数可采用分段线性的方式进行处理[22]。 机组的动力特性参考文献[26],采用三角形权值技术进行处理。特殊地,对于季调节及以上电站,日内始末水位变化幅度较小,可在初始水位附近采用线性函数表示水位库容关系。

        1)机组振动区约束线性化

        大型机组可能存在多个振动区,将出力在最大最小出力范围内划分为多个非连续的安全运行区间。借鉴文献[21],文中假设机组振动区不随机组水头变化而改变,即固定的振动区,假设机组有 K 个振动区,则有 K + 1 个安全运行区间,即

        2)水电机组出力波动限制约束线性化

        水电机组出力的频繁波动表现为相邻时段出力的向上或向下调节。区别于已有文献中采用的关联搜索[27] 和负荷重构[28] 等方法,文中创新性地通过引入调节指标变量进行处理,可有效提高求解效率。

 

        因此 ,式(19)的非线性约束可用式(29)—式(31)替代。如图1所示机组状态变化示意图,当机组稳定出力时间达到 te 后,机组具有上调、下调和平稳出力 3 种有效状态,假设此时为 t0 时刻,若 t1 时刻上调或下调出力,调整之后则仅有平稳出力状态有效,上调和下调的状态暂时无效,直到稳定出力时间再次达到 te 后,机组上调和下调的状态重新有效,如此逐时段约束保证机组出力的稳定性。 

 

2.2 光伏出力场景构建

        受天气变化、预测方法等因素影响,光伏预测出力与实际出力之间的偏差客观存在。文中以历史偏差数据为样本,采用模糊聚类分析,构建光伏出力场景,具体方法流程如下。

        1)出力偏差处理

        2)模糊聚类分析

        以光伏场站历史日内96 点预测出力与实际出力偏差曲线为样本,进行模糊聚类分析,并采用聚类综合质量确定最佳聚类数,最后以各类别的模糊聚类中心构建预测出力偏差场景,具体公式和详细步骤可参考文献[29]。

        3)光伏出力场景

2.3 求解流程

        本文所述的互补系统最大化可消纳电量期望模型的求解步骤如下:

        步骤 1:读取基础数据并设置计算条件。包括区间流量、梯级发电计划、光伏预测出力、光伏历史预测与实际出力、分区断面约束、爬坡能力等。

        步骤 2:模型转换处理。采用 2.1 节所述模型转换方法,对非线性约束进行线性化处理。

        步骤 3:光伏出力场景构建。根据计划日光伏预测出力以及 2.2 节所述方法构建光伏出力场景。

        步骤 4:模型求解。将目标函数与转化后的约束结合构成的 MILP 模型,在 Java 环境中,编码调用CPLEX 求解类,实现模型求解,附录 Á 给出了编码和求解示例。

        步骤 5:结果输出。输出互补系统整体可消纳电量期望值,不同组合场景下的电站出力、机组出力、机组开停机、出库流量、水库水位等结果信息。

3.编程思路分析

3.1参数和变量定义

表1 相关参数

 

 表2 决策变量

 

3.2编程思路

        根据对文献内容的解读,可以设计下面的编程思路:

        步骤1:输入所需数据

算例分析用到的部分数据可以从原文中找到,大部分数据文献中都没有给出,只能参考其他文献进行设置。然后将所有需要的数据,按照表1的定义格式输入即可。包括区间流量、梯级发电计划、光伏预测出力、光伏历史预测与实际出力、分区断面约束、爬坡能力等。

        步骤2:光伏出力的场景生成与削减

        这部分就是根据计划日光伏预测出力以及原文中2.2节所述方法构建光伏的出力场景。原文中只是简单提到采用了参考文献[29]中所用方法进行场景生成与削减,并未详细介绍,此类方法比较简单,网上也能找到很多示例。另外,本来这个模型就是涉及非常多0-1变量,问题规模比较大,如果再加上多个场景,变量的数目将呈倍数增加,所以在复现的代码中,我就没有写场景生成与缩减的程序,直接给出了数据,选取典型的光伏出力场景作为算例。如果有需要的话可以自己修改数据,或者加入场景生成与削减的代码。

        步骤3:定义决策变量

        这一步比较简单,按照表2,初始化决策变量即可,同时每个决策变量的维度以及类型(sdpvar还是binvar)不要出错。另外,代码中变量定义的方式和文献中稍微有点不一样,这里不再详细介绍,具体可以去代码中查看。

        步骤4:写目标函数和约束条件

        写目标函数比较简单,按照给定的数据和定义的变量,写出目标函数即可。约束条件的处理比较复杂,文中只给出了约束条件16和19的线性化方法,其他几个非线性约束都是一笔带过,只说了用到某某文献中的方法。方便起见,我在这里把所有非线性约束都写出来,并介绍处理方法:

        1)式10

        原文中只给出了水位和库容的关系示意,一般情况下水位可以表示为库容的三次多项式,具体如下:

        四个不同的水电站水位-库容关系可以分别表示为:

y1=0.0006x^3-0.0811x^2+4.769x+1031, 10<=x<=45

y1=0.0269x^3-0.8958x^2+14.77x+891.8, 3.6<=x<=8.8

y1=0.01307x^3-0.699x^2+10.41x+803.5, 10<=x<=25

y1=0.005465x^3-0.1435x^2+3.495x+700.2, 5<=x<=22

        针对上述非线性函数关系,可采用分段线性化的方法将其转为线性约束,如图所示

2)式11

        尾水位是泄流量的非线性函数,通常表示为泄流量的2次多项式:

        四个不同的水电站尾水位-泄流量关系可以分别表示为:

y2=7.619e-07q^2-0.000672q+976.1

y2=7.081e-08q^2-9.372e-05q+839.1

y2=7.086e-08q^2+0.00032345q+752.6

y2=1.327e-07q^2-0.0005827q+655.9

        针对上述非线性函数关系,可采用分段线性化的方法将其转为线性约束,和约束10处理方法一致。

        3)式16、19

        原文中有详细解释,此处不再赘述。

        4)式21

        约束21是一个二次约束,也可以通过分段线性化的方式转为线性约束。不再赘述。

        5)式22

        水电站的非线性出力曲线,可以表示如下:

 

为了说明采用三角权值法是如何对这个表达式进行线性化的,首先把表达式简化如下:

        假设将Q的取值范围分为n1-1个区间,区间的端点值分别为Q1,Q2,...,Qn1,将H的取值范围分为n2-1个区间,区间的端点值分别为H1,H2,...,Hn2。那么对于任意的Q和H,都可以表示为区间端点值的线性组合,例如Q的取值在Q1和Q2之间,就可以用Q1和Q2表示Q,H的取值范围在H3和H4之间,就可以用H3和H4表示H。

        我们令pij=Hi×Qj,那么表达式也可以表示为:

        下面举个例子,假设H取值范围是[10,25],分为3个区间,区间端点分别为H1=10, H2=15, H3=20, H4=25,H取值范围是[80,100],分为4个区间,区间端点分别为H1=80, H2=85,H3=90, H4=95, H5=100。假设H是13,Q是86,就可以写成H=0.6H1+0.4H2,Q=0.8Q2+0.2Q3,QH就可以写成(0.6H1+0.4H2)(0.8Q2+0.2Q3)。也就是λ21=0.6×0.8,λ31=0.6×0.2,λ22=0.4×0.8,λ32=0.4×0.2。因此,可以将机组的输出功率表示为变量λij和已知量pij的表达式,从非线性表达式转为线性表达式。

步骤5求解模型

        原文中使用的是java和cplex求解,这份代码使用的是matlab+yalmip+cplex求解。

步骤6输出结果

        按原文中的格式输出优化结果,但由于文中提供的数据非常少,大部分数据都是自己设定的,所以结果肯定不一样,但原理都是一样的。

4.Matlab代码

        完整的matlab代码可以从这个链接获取:

https://download.csdn.net/download/weixin_44209907/88130711

5.运行结果分析

5.1光伏出力曲线

 5.2运行机组台数

 

5.3梯级水电站群出力 

 

5.4水电机组出力 

 

 5.5梯级水电站水位变化

 5.6各个断面出力

 

 

这篇关于(文章复现)梯级水光互补系统最大化可消纳电量期望短期优化调度模型matlab代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/613368

相关文章

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

在不同系统间迁移Python程序的方法与教程

《在不同系统间迁移Python程序的方法与教程》本文介绍了几种将Windows上编写的Python程序迁移到Linux服务器上的方法,包括使用虚拟环境和依赖冻结、容器化技术(如Docker)、使用An... 目录使用虚拟环境和依赖冻结1. 创建虚拟环境2. 冻结依赖使用容器化技术(如 docker)1. 创

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首

Deepseek使用指南与提问优化策略方式

《Deepseek使用指南与提问优化策略方式》本文介绍了DeepSeek语义搜索引擎的核心功能、集成方法及优化提问策略,通过自然语言处理和机器学习提供精准搜索结果,适用于智能客服、知识库检索等领域... 目录序言1. DeepSeek 概述2. DeepSeek 的集成与使用2.1 DeepSeek API

MySQL数据库函数之JSON_EXTRACT示例代码

《MySQL数据库函数之JSON_EXTRACT示例代码》:本文主要介绍MySQL数据库函数之JSON_EXTRACT的相关资料,JSON_EXTRACT()函数用于从JSON文档中提取值,支持对... 目录前言基本语法路径表达式示例示例 1: 提取简单值示例 2: 提取嵌套值示例 3: 提取数组中的值注意