【2015-2016 XVI Open CupA】【贪心 确定性思想 正难则反 本身具有拓扑序】Abstract Picture 每行每列各染色一次 恢复颜色方案

本文主要是介绍【2015-2016 XVI Open CupA】【贪心 确定性思想 正难则反 本身具有拓扑序】Abstract Picture 每行每列各染色一次 恢复颜色方案,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

A. Abstract Picture
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

Famous abstract painter Va Sya plans to start new painting. It will be composed as square with grid n × n, where each unit square is painted by some color.

Va Sya already defined the colors for some unit squares. Color of other squares does not matter for him.

For this work Va Sya is planning use the continuous technics: he paints whole row or whole column in some color. Moreover, each row and each column must be painted exactly once, so each unit square will be painted twice and its final color will be the last of two used colors.

Help Va Sya to find appropriate sequence of paints.

Input

First line of the input contains one integer n — length of the painting side in units (1 ≤ n ≤ 3000).

Each of the next n lines contains n characters. If i-th character in j-th line equals to '?', it means that color of i-th cell in j-th row of painting does not matter. Otherwise it contains lowercase English letter from 'a' to 'z' inclusively, which represents the color of corresponding cell (it is well known that Va Sya uses only 26 colors).

Output

Print 2n lines, i-th of those lines contains description of i-th paint in the following format:

«h y c» — row y is painted with color c;

«v x c» — column x is painted with color c.

Rows are numbered sequentially upside down, columns are numbered sequentially leftside right, so upper left corner is on intersection of row 1 and column 1. Each row and each column must be mentioned in the output exactly once.

You may assume that there exists at least one solution for the given input. If there are several correct solutions, print any of them.

Example
input
3
ac?
ab?
?cz
output
h 1 p
h 3 q
v 2 c
h 2 b
v 1 a
v 3 z
#include<stdio.h>
#include<iostream>
#include<string.h>
#include<string>
#include<ctype.h>
#include<math.h>
#include<set>
#include<map>
#include<vector>
#include<queue>
#include<bitset>
#include<algorithm>
#include<time.h>
using namespace std;
void fre() { freopen("c://test//input.in", "r", stdin); freopen("c://test//output.out", "w", stdout); }
#define MS(x,y) memset(x,y,sizeof(x))
#define MC(x,y) memcpy(x,y,sizeof(x))
#define MP(x,y) make_pair(x,y)
#define ls o<<1
#define rs o<<1|1
typedef long long LL;
typedef unsigned long long UL;
typedef unsigned int UI;
template <class T1, class T2>inline void gmax(T1 &a, T2 b) { if (b>a)a = b; }
template <class T1, class T2>inline void gmin(T1 &a, T2 b) { if (b<a)a = b; }
const int N = 3030, M = 0, Z = 1e9 + 7, ms63 = 0x3f3f3f3f;
int n;
char a[N][N];
queue< pair<int,int> >q;
int sum[N + N];
int num[N + N][128];
pair<int,int> ans[N + N];
bool e[N + N];
void inq(int p, int c)
{q.push(MP(p, c));e[p] = 1;
}
void solve()
{while (!q.empty())q.pop();MS(e, 0);for (int i = 1; i <= n+n; ++i)if (sum[i]){for (char j = 'a'; j <= 'z'; ++j){if (num[i][j] == sum[i])inq(i, j);}}int o = n + n;while (!q.empty()){int p = q.front().first;int c = q.front().second;q.pop();ans[o--] = MP(p,c);if (p <= n)//行->列{for (int j = 1; j <= n; ++j)if(a[p][j]!='?'&&!e[j+n]){if (e[j + n])continue;--sum[j + n];--num[j + n][a[p][j]];if (sum[j + n])for (char k = 'a'; k <= 'z'; ++k){if (sum[j + n] == num[j + n][k])inq(j + n, k);}}}else//列->行{for (int i = 1; i <= n;++i)if(a[i][p-n]!='?')//一行行来{if (e[i])continue;--sum[i];--num[i][a[i][p - n]];if (sum[i] )for (char k = 'a'; k <= 'z';++k){if (sum[i] == num[i][k])inq(i,k);}}}}for (int i = n+n; i >= 1; --i)if (e[i] == 0)ans[o--] = MP(i, 'a');for (int i = 1; i <= n+n; ++i){if (ans[i].first <= n)printf("h %d %c\n", ans[i].first, ans[i].second);else printf("v %d %c\n", ans[i].first-n, ans[i].second);}
}
int main()
{while (~scanf("%d", &n)){MS(num, 0); MS(sum, 0);for (int i = 1; i <= n; ++i)scanf("%s", a[i]+1);for (int i = 1; i <= n; ++i){for (int j = 1; j <= n; ++j)if (a[i][j] != '?'){++sum[i];++num[i][a[i][j]];++sum[n+j];++num[n+j][a[i][j]];}}solve();}return 0;
}
/*
【trick&&吐槽】
1,这种sb题我竟然搞混了做法。
想了什么二分图匹配啦,网络流啦,拓扑排序啦一系列做法。
然而正解却是——
倒着来思考,直接按照确定性原则贪心选择就好了。2,写入队操作的时候没有把该行或列直接置否,导致了多次入队,崩盘>_<
果然是要把操作写得函数化的好。【题意】
给你一个n(3000)*n的正方形。
每个格子被涂了一定的颜色。
颜色一共只有'a'~'z'共计26种,
有些颜色任意,用'?'表示。涂色实际上恰好图了2n次,每行每列都涂色了一次。然而顺序和涂了什么色却不知道。
现在给你这个图,让你确定一种合法的涂色方案【类型】
贪心
遵循确定性原则分析问题【分析】
我们发现,我们最后一次涂色,该行或该列的颜色一定全部相同。
如果当前一行或一列的颜色完全相同,该行或列就可以是当前最后一次涂色的。
我们直接暴力,枚举所有行或列,取出所有可能是最后一次涂色的。
消除该次涂色对相应行或列的影响,并继续这个类似于拓扑排序的过程。
倒序输出,就可以AC了。【时间复杂度&&优化】
O(n^2*26)*/



这篇关于【2015-2016 XVI Open CupA】【贪心 确定性思想 正难则反 本身具有拓扑序】Abstract Picture 每行每列各染色一次 恢复颜色方案的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/610412

相关文章

C#高效实现在Word文档中自动化创建图表的可视化方案

《C#高效实现在Word文档中自动化创建图表的可视化方案》本文将深入探讨如何利用C#,结合一款功能强大的第三方库,实现在Word文档中自动化创建图表,为你的数据呈现和报告生成提供一套实用且高效的解决方... 目录Word文档图表自动化:为什么选择C#?从零开始:C#实现Word文档图表的基本步骤深度优化:C

Python + Streamlit项目部署方案超详细教程(非Docker版)

《Python+Streamlit项目部署方案超详细教程(非Docker版)》Streamlit是一款强大的Python框架,专为机器学习及数据可视化打造,:本文主要介绍Python+St... 目录一、针对 Alibaba Cloud linux/Centos 系统的完整部署方案1. 服务器基础配置(阿里

SpringSecurity中的跨域问题处理方案

《SpringSecurity中的跨域问题处理方案》本文介绍了跨域资源共享(CORS)技术在JavaEE开发中的应用,详细讲解了CORS的工作原理,包括简单请求和非简单请求的处理方式,本文结合实例代码... 目录1.什么是CORS2.简单请求3.非简单请求4.Spring跨域解决方案4.1.@CrossOr

使用MyBatis TypeHandler实现数据加密与解密的具体方案

《使用MyBatisTypeHandler实现数据加密与解密的具体方案》在我们日常的开发工作中,经常会遇到一些敏感数据需要存储,比如用户的手机号、身份证号、银行卡号等,为了保障数据安全,我们通常会对... 目录1. 核心概念:什么是 TypeHandler?2. 实战场景3. 代码实现步骤步骤 1:定义 E

Python实现繁体转简体功能的三种方案

《Python实现繁体转简体功能的三种方案》在中文信息处理中,繁体字与简体字的转换是一个常见需求,无论是处理港澳台地区的文本数据,还是开发面向不同中文用户群体的应用,繁简转换都是不可或缺的功能,本文将... 目录前言为什么需要繁简转换?python实现方案方案一:使用opencc库方案二:使用zhconv库

java中的DDD思想指的是什么及在Java中的体现详解

《java中的DDD思想指的是什么及在Java中的体现详解》领域驱动设计(简称DDD)是一种软件开发方法,旨在通过对业务领域的深入理解,构建高内聚、低耦合的系统,:本文主要介绍java中的DDD思... 目录前言什么是 DDD(Domain-Driven Design)?核心思想:DDD 的三大核心概念DD

MyBatis Plus中执行原生SQL语句方法常见方案

《MyBatisPlus中执行原生SQL语句方法常见方案》MyBatisPlus提供了多种执行原生SQL语句的方法,包括使用SqlRunner工具类、@Select注解和XML映射文件,每种方法都有... 目录 如何使用这些方法1. 使用 SqlRunner 工具类2. 使用 @Select 注解3. 使用

Mysql利用binlog日志恢复数据实战案例

《Mysql利用binlog日志恢复数据实战案例》在MySQL中使用二进制日志(binlog)恢复数据是一种常见的用于故障恢复或数据找回的方法,:本文主要介绍Mysql利用binlog日志恢复数据... 目录mysql binlog核心配置解析查看binlog日志核心配置项binlog核心配置说明查看当前所

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

前端缓存策略的自解方案全解析

《前端缓存策略的自解方案全解析》缓存从来都是前端的一个痛点,很多前端搞不清楚缓存到底是何物,:本文主要介绍前端缓存的自解方案,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、为什么“清缓存”成了技术圈的梗二、先给缓存“把个脉”:浏览器到底缓存了谁?三、设计思路:把“发版”做成“自愈”四、代码