11.3、信赖域策略优化算法TRPO强化学习-运用实践

2024-01-14 20:12

本文主要是介绍11.3、信赖域策略优化算法TRPO强化学习-运用实践,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

基于LunarLander登陆器的TRPO强化学习(含PYTHON工程)

TRPO强化学习算法主要分为3个部分,分别介绍其理论、细节、实现

本文主要介绍TRPO的理论和代码的对应、实践

TRPO系列(TRPO是真的复杂,全部理解花费了我半个月的时间嘞,希望也能帮助大家理解一下):
11.1、信赖域策略优化算法TRPO强化学习-从理论到实践
11.2、信赖域策略优化算法TRPO强化学习-约束优化求解
11.3、信赖域策略优化算法TRPO强化学习-运用实践

其他算法:
07、基于LunarLander登陆器的DQN强化学习案例(含PYTHON工程)

08、基于LunarLander登陆器的DDQN强化学习(含PYTHON工程)

09、基于LunarLander登陆器的Dueling DQN强化学习(含PYTHON工程)

10、基于LunarLander登陆器的Dueling DDQN强化学习(含PYTHON工程)

11、基于LunarLander登陆器的A2C强化学习(含PYTHON工程)
TRPO的LunarLander登陆器强化学习(含PYTHON工程):
11.1、信赖域策略优化算法TRPO强化学习-从理论到实践
11.2、信赖域策略优化算法TRPO强化学习-约束优化求解
11.3、信赖域策略优化算法TRPO强化学习-运用实践
PPO的LunarLander登陆器强化学习(含PYTHON工程):
13、近端策略优化Proximal Policy Optimization (PPO) 算法:从原理到实践
SAC的LunarLander登陆器强化学习(含PYTHON工程):
14、强化学习Soft Actor-Critic算法:推导、理解与实战

参考:
【TRPO系列讲解】(五)TRPO_理论推导篇

目录

    • 基于LunarLander登陆器的TRPO强化学习(含PYTHON工程)
    • 1、替代优势函数的计算
    • 2、替代优势函数导数的计算
    • 3、海森向量积的计算
    • 4、共轭梯度法求解 H − 1 g {{H^{ - 1}}g} H1g
    • 5、计算策略网络的更新步长
    • 6、更新步长回溯衰减
    • 7、基于LunarLander登陆器的TRPO强化学习(含PYTHON工程)

1、替代优势函数的计算

信赖域策略优化算法TRPO强化学习-从理论到实践中介绍了TRPO的核心函数:替代优势函数。
要优化的式子是:
max ⁡ θ L θ o l d ( θ ) = max ⁡ θ E s ∼ ρ θ o l d , a ∼ θ o l d [ π θ ( a ∣ s ) π θ o l d ( a ∣ s ) A θ o l d ( s , a ) ] s u b j e c t t o E s ∼ ρ θ o l d [ D K L ( π θ o l d ( ⋅ ∣ s ) ∥ π θ ( ⋅ ∣ s ) ) ] ≤ δ \begin{array}{l} {\max _\theta }{L_{{\theta _{old}}}}(\theta ) ={\max _\theta }E{_{s\sim{\rho _{{\theta _{old}}}},a\sim\theta_{old} }}\left[ {\frac{{{\pi _\theta }(a\mid s)}}{{{\pi _{{\theta _{old}}}}(a\mid s)}}{A_{{\theta _{old}}(s,a)}}} \right]\\ subject\;to\quad {E_{s\sim{\rho _{{\theta _{old}}}}}}\left[ {{D_{KL}}({\pi _{{\theta _{old}}}}( \cdot \mid s)\parallel {\pi _\theta }( \cdot \mid s))} \right] \le \delta \end{array} maxθLθold(θ)=maxθEsρθold,aθold[πθold(as)πθ(as)Aθold(s,a)]subjecttoEsρθold[DKL(πθold(s)πθ(s))]δ

替代优势函数 L θ o l d ( θ ) {L_{{\theta _{old}}}}(\theta ) Lθold(θ)的表达式为:
L θ o l d ( θ ) = E s ∼ ρ θ o l d , a ∼ θ o l d [ π θ ( a ∣ s ) π θ o l d ( a ∣ s ) A θ o l d ( s , a ) ] {L_{{\theta _{old}}}}(\theta ) =E{_{s\sim{\rho _{{\theta _{old}}}},a\sim\theta_{old} }}\left[ {\frac{{{\pi _\theta }(a\mid s)}}{{{\pi _{{\theta _{old}}}}(a\mid s)}}{A_{{\theta _{old}}(s,a)}}} \right] Lθold(θ)=Esρθold,aθold[πθold(as)πθ(as)Aθold(s,a)]
其中:
A π ( s , a ) = Q π ( s , a ) − V π ( s ) A_\pi(s,a)=Q_\pi(s,a)-V_\pi(s) Aπ(s,a)=Qπ(s,a)Vπ(s)

对应核心代码(考虑到熵实际上是额外的改进了):

	# 计算新旧动作概率之比,即当前策略与旧策略在给定状态下的动作选择概率之比prob_ratio = action_prob / old_action_prob  # pi(a|s) / pi_old(a|s)# 计算替代损失。这个损失主要由两部分组成:1) 基于新旧策略的动作概率之比的收益;2) entropy正则化项,由self.ent_coeff控制权重。loss = tf.reduce_mean(prob_ratio * advantage) + self.ent_coeff * entropy

状态价值函数V可以通过批评者网络得到,但是Q函数在TRPO中属于未知的,在此使用 U t U_t Ut近似,其原因如下:

Q(s,a)和Ut关系:Q(s,a)是Ut的期望,期望可以理解为求积分,实际上Q是对Ut把所有t之后的时刻(t+1、t+2等等)当作变量求积分得到的。因此Q(s,a)可以直观反应当前状态s下执行各个动作的好坏。
Q π ( s t , a t ) = E [ U t ∣ s t , a t ] Q_\pi(s_t,{a_t})=\mathbb{E}[U_t\mid s_t,{a_t}] Qπ(st,at)=E[Utst,at]

由此替代优势函数的计算的代码表达如下(代码里面叫surrogate_loss,其实是一样的):

# 计算状态价值函数
Vs = self.value_model(obs).numpy().flatten()
# 计算优势函数,Gs就是Ut
advantage = Gs - Vs
# 直接标准化
advantage = (advantage - advantage.mean())/(advantage.std() + 1e-8)
actions_one_hot = tf.one_hot(actions, self.envs[0].action_space.n, dtype="float64")
# 计算其替代函数L的损失
policy_loss = surrogate_loss()
def surrogate_loss(theta=None):# 如果theta为None,则使用self.model作为模型,否则使用self.tmp_model并为其赋值if theta is None:model = self.modelelse:model = self.tmp_modelassign_vars(self.tmp_model, theta)# 使用模型对obs进行预测,得到logitslogits = model(obs)# 对logits应用softmax函数,得到action的概率分布action_prob = tf.nn.softmax(logits)# 计算每个动作的概率之和,这里假设actions_one_hot是动作的one-hot编码action_prob = tf.reduce_sum(actions_one_hot * action_prob, axis=1)# 使用原始模型对obs进行预测,得到旧的logitsold_logits = self.model(obs)# 对旧的logits应用softmax函数,得到旧的动作概率分布old_action_prob = tf.nn.softmax(old_logits)# 计算每个动作的旧概率之和,并加上一个小的常数以避免除以0的错误old_action_prob = tf.reduce_sum(actions_one_hot * old_action_prob, axis=1).numpy() + 1e-8# 计算新旧动作概率之比,即当前策略与旧策略在给定状态下的动作选择概率之比prob_ratio = action_prob / old_action_prob  # pi(a|s) / pi_old(a|s)# 计算替代损失。这个损失主要由两部分组成:1) 基于新旧策略的动作概率之比的收益;2) entropy正则化项,由self.ent_coeff控制权重。loss = tf.reduce_mean(prob_ratio * advantage) + self.ent_coeff * entropy# 返回计算得到的损失值。return loss

2、替代优势函数导数的计算

信赖域策略优化算法TRPO强化学习-约束优化求解的第2部分中,替代优势函数的导数在更新中扮演着十分重要的作用,需要进行求解:
g T = ∇ θ L θ o l d ( θ ) ∣ θ = θ o l d {g^T} = {\nabla _\theta }{L_{{\theta _{old}}}}(\theta ){|_{\theta = {\theta _{old}}}} gT=θLθold(θ)θ=θold
θ ′ = 2 δ g T H − 1 g H − 1 g + θ \theta^{\prime}=\sqrt{\frac{2\delta}{g^{T}H^{-1}g}}H^{-1}g+\theta θ=gTH1g2δ H1g+θ

其对应的代码为:

# 计算替代优势函数的导数g
policy_gradient = flatgrad(surrogate_loss, self.model.trainable_variables).numpy()

其中,flatgrad是求导的函数,在代码中会多次用到:

# Makes gradient of function loss_fn wrt var_list and
# flattens it to have a 1-D vector 计算梯度,并将其扁平化
def flatgrad(loss_fn, var_list):with tf.GradientTape() as t:loss = loss_fn()grads = t.gradient(loss, var_list, unconnected_gradients=tf.UnconnectedGradients.ZERO)return tf.concat([tf.reshape(g, [-1]) for g in grads], axis=0)

3、海森向量积的计算

对于TRPO的不等式约束,我们对其使用二阶泰勒展开(证明参考自然梯度Natural Policy):
D K L ρ o l d ‾ ( π o l d , π n e w ) → 1 2 ( θ − θ o l d ) T A ( θ o l d ) ( θ − θ o l d ) H = A ( θ o l d ) = ∇ θ 2 D K L ρ o l d ‾ ( π o l d , π n e w ) \begin{aligned}\overline{D_{KL}^{\rho_{old}}}(\pi_{old},\pi_{new})\to\frac12(\theta-\theta_{old})^TA(\theta_{old})(\theta-\theta_{old})\\\\H=A(\theta_{old})=\nabla_\theta^2\overline{D_{KL}^{\rho_{old}}}(\pi_{old},\pi_{new})\end{aligned} DKLρold(πold,πnew)21(θθold)TA(θold)(θθold)H=A(θold)=θ2DKLρold(πold,πnew)

此外,我们需要使用共轭梯度法求解 H − 1 g {{H^{ - 1}}g} H1g矩阵,这等价于求解线性方程 H x = g Hx=g Hx=g,需要频繁使用到海森矩阵H和向量x的乘积。而且,海森矩阵需要对KL散度求二阶导得到,这是一个相对复杂的过程。【TRPO系列讲解】(六)TRPO_求解实现篇的第12min介绍了一种简单的运算加速方式,就是先对KL散度求一阶导数,然后乘以向量x,然后再对相乘后的式子求导
H i j = ∂ ∂ θ j ∂ D K L ∂ θ i y i = ∂ ∂ θ ∑ j ∂ D K L ∂ θ j x j y k = ∑ j H k j x j = ∑ j ∂ ∂ θ j ∂ D K L ∂ θ k x j = ∂ ∂ θ k ∑ j ∂ D K L ∂ θ j x j \begin{aligned} &H_{ij}=\frac{\partial}{\partial\theta_{j}}\frac{\partial D_{KL}}{\partial\theta_{i}} \\ &y_{i}=\frac{\partial}{\partial\theta}\sum_{j}\frac{\partial D_{KL}}{\partial\theta_{j}}x_{j} \\ &y_{k}=\sum_{j}H_{kj}x_{j} =\sum_{j}\frac{\partial}{\partial\theta_{j}}\frac{\partial D_{KL}}{\partial\theta_{k}}x_{j} \\ &=\frac{\partial}{\partial\theta_{k}}\sum_{j}\frac{\partial D_{KL}}{\partial\theta_{j}}x_{j} \end{aligned} Hij=θjθiDKLyi=θjθjDKLxjyk=jHkjxj=jθjθkDKLxj=θkjθjDKLxj

对应代码如下:

# 计算Hessian向量积
def hessian_vector_product(p):# 此处的p实际输入的是xdef hvp_fn():# 使用flatgrad函数计算kl_fn损失函数关于模型可训练变量的梯度,得到一个扁平化的梯度数组kl_grad_vectorkl_grad_vector = flatgrad(kl_fn, self.model.trainable_variables)# 计算梯度向量与给定向量p的点积,并将结果存储在grad_vector_product中grad_vector_product = tf.reduce_sum(kl_grad_vector * p)# 返回grad_vector_product的值return grad_vector_product# 使用flatgrad函数计算hvp_fn内部函数关于模型可训练变量的梯度,得到一个扁平化的梯度数组fisher_vector_productfisher_vector_product = flatgrad(hvp_fn, self.model.trainable_variables).numpy()# 返回fisher_vector_product的值,并加上cg_damping与向量p的乘积?return fisher_vector_product + (self.cg_damping * p)

4、共轭梯度法求解 H − 1 g {{H^{ - 1}}g} H1g

信赖域策略优化算法TRPO强化学习-约束优化求解的第4部分提到了,我们需要使用共轭梯度法求解 H − 1 g {{H^{ - 1}}g} H1g矩阵,这等价于求解线性方程 H x = g Hx=g Hx=g,需要频繁使用到海森矩阵H和向量x的乘积,这实际上是残差的计算。

其中policy_gradient 是对替代优势函数的导数,也就是g。hessian_vector_product函数作为conjugate_grad函数的第一个输入Ax,之后再调用Ax§计算海森矩阵和向量p的乘积。(至始至终都没有单独计算过海森矩阵的值,都是计算的海森矩阵和向量的乘积

对共轭梯度法不了解的参考我的另一个博客:最速下降法、梯度下降法、共轭梯度法—理论分析与实践

代码中step_direction 其实就是要计算的 H − 1 g {{H^{ - 1}}g} H1g矩阵。

# 计算替代优势函数的导数g
policy_gradient = flatgrad(surrogate_loss, self.model.trainable_variables).numpy()
# 使用共轭梯度法
step_direction = conjugate_grad(hessian_vector_product, policy_gradient)
		# 共轭梯度法def conjugate_grad(Ax, b):"""Conjugate gradient algorithm(see https://en.wikipedia.org/wiki/Conjugate_gradient_method)"""x = np.zeros_like(b)r = b.copy() # Note: should be 'b - Ax(x)', but for x=0, Ax(x)=0. Change if doing warm start.p = r.copy()old_p = p.copy()r_dot_old = np.dot(r,r)for _ in range(self.cg_iters):z = Ax(p)alpha = r_dot_old / (np.dot(p, z) + 1e-8)old_x = xx += alpha * pr -= alpha * zr_dot_new = np.dot(r,r)beta = r_dot_new / (r_dot_old + 1e-8)r_dot_old = r_dot_newif r_dot_old < self.residual_tol:breakold_p = p.copy()p = r + beta * pif np.isnan(x).any():print("x is nan")print("z", np.isnan(z))print("old_x", np.isnan(old_x))print("kl_fn", np.isnan(kl_fn()))return x

5、计算策略网络的更新步长

信赖域策略优化算法TRPO强化学习-约束优化求解的第3部分提到了,在TRPO算法中,其更新公式为:
θ ′ = 2 δ g T H − 1 g H − 1 g + θ \theta^{\prime}=\sqrt{\frac{2\delta}{g^{T}H^{-1}g}}H^{-1}g+\theta θ=gTH1g2δ H1g+θ

H − 1 g {{H^{ - 1}}g} H1g的数值我们可以通过共轭梯度法进行求解,那我们该如何计算更新的参数呢?

# 计算替代优势函数的导数g
policy_gradient = flatgrad(surrogate_loss, self.model.trainable_variables).numpy()
# 使用共轭梯度法,step_direction 是H-1*g
step_direction = conjugate_grad(hessian_vector_product, policy_gradient)
# 中间变量,计算的是
shs = .5 * step_direction.dot(hessian_vector_product(step_direction).T)lm = np.sqrt(shs / self.delta) + 1e-8
fullstep = step_direction / lm

根据如上的代码:
s h s = ( 1 2 H − 1 g ) ( H H − 1 g ) T = 1 2 g T H − 1 g l m = g T H − 1 g 2 δ f u l l s t e p = H − 1 g g T H − 1 g 2 δ = 2 δ g T H − 1 g H − 1 g \begin{array}{l} shs = \left( {\frac{1}{2}{H^{ - 1}}g} \right){\left( {H{H^{ - 1}}g} \right)^T} = \frac{1}{2}{g^T}{H^{ - 1}}g\\ lm = \sqrt {\frac{{{g^T}{H^{ - 1}}g}}{{2\delta }}} \\ fullstep = \frac{{{H^{ - 1}}g}}{{\sqrt {\frac{{{g^T}{H^{ - 1}}g}}{{2\delta }}} }} = \sqrt {\frac{{2\delta }}{{{g^T}{H^{ - 1}}g}}} {H^{ - 1}}g \end{array} shs=(21H1g)(HH1g)T=21gTH1glm=2δgTH1g fullstep=2δgTH1g H1g=gTH1g2δ H1g

和更新数据一致。

6、更新步长回溯衰减

但是,信赖域策略优化算法TRPO强化学习-约束优化求解的第5部分提到了,TRPO使用了太多的近似,理论的方程并不一定是最好的,那我们我们该如何做呢?我们可以选择小于 α \alpha α的学习率多次尝试(如 0. 9 1 α 0.9^1\alpha 0.91α 0. 9 2 α 0.9^2\alpha 0.92α 0. 9 3 α 0.9^3\alpha 0.93α 0. 9 4 α 0.9^4\alpha 0.94α…),直到找到一个能够提升替代优势 L θ o l d ( θ ) {L_{{\theta _{old}}}}(\theta ) Lθold(θ)的学习率,这个过程被称为LineSearch:

	# 在给定方向上找到函数的局部最小值,最优化算法def linesearch(x, fullstep):# fval = surrogate_loss(x)for (_n_backtracks, stepfrac) in enumerate(self.backtrack_coeff**np.arange(self.backtrack_iters)):xnew = x + stepfrac * fullstepnewfval = surrogate_loss(xnew)kl_div = kl_fn(xnew)if np.isnan(kl_div):print("kl is nan")print("xnew", np.isnan(xnew))print("x", np.isnan(x))print("stepfrac", np.isnan(stepfrac))print("fullstep",  np.isnan(fullstep))if kl_div <= self.delta and newfval >= 0:print("Linesearch worked at ", _n_backtracks)return xnewif _n_backtracks == self.backtrack_iters - 1:print("Linesearch failed.", kl_div, newfval)return x

7、基于LunarLander登陆器的TRPO强化学习(含PYTHON工程)

基于TensorFlow 2.10

主要代码来自github上的一位小哥,但是原来的效果太差了:
在这里插入图片描述
我稍微修改优化了一下,下面的两张图第一个是每次运行的得分,第二张为均值平滑后的曲线,因为使用了wandb,实际上运行了大约300个episode,作者原来的因该是运行500个episode的结果嘞(LR是价值网络的学习率,因为使用了自然梯度法,策略网络的学习率无需手动设置)。优化后基本能跑个200多分,算是还可以吧。
在这里插入图片描述
工程可以从最上方链接下载,喜欢就点个赞吧。

这篇关于11.3、信赖域策略优化算法TRPO强化学习-运用实践的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/606377

相关文章

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

golang内存对齐的项目实践

《golang内存对齐的项目实践》本文主要介绍了golang内存对齐的项目实践,内存对齐不仅有助于提高内存访问效率,还确保了与硬件接口的兼容性,是Go语言编程中不可忽视的重要优化手段,下面就来介绍一下... 目录一、结构体中的字段顺序与内存对齐二、内存对齐的原理与规则三、调整结构体字段顺序优化内存对齐四、内

Python itertools中accumulate函数用法及使用运用详细讲解

《Pythonitertools中accumulate函数用法及使用运用详细讲解》:本文主要介绍Python的itertools库中的accumulate函数,该函数可以计算累积和或通过指定函数... 目录1.1前言:1.2定义:1.3衍生用法:1.3Leetcode的实际运用:总结 1.1前言:本文将详

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

Deepseek使用指南与提问优化策略方式

《Deepseek使用指南与提问优化策略方式》本文介绍了DeepSeek语义搜索引擎的核心功能、集成方法及优化提问策略,通过自然语言处理和机器学习提供精准搜索结果,适用于智能客服、知识库检索等领域... 目录序言1. DeepSeek 概述2. DeepSeek 的集成与使用2.1 DeepSeek API

Redis的数据过期策略和数据淘汰策略

《Redis的数据过期策略和数据淘汰策略》本文主要介绍了Redis的数据过期策略和数据淘汰策略,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录一、数据过期策略1、惰性删除2、定期删除二、数据淘汰策略1、数据淘汰策略概念2、8种数据淘汰策略

Tomcat高效部署与性能优化方式

《Tomcat高效部署与性能优化方式》本文介绍了如何高效部署Tomcat并进行性能优化,以确保Web应用的稳定运行和高效响应,高效部署包括环境准备、安装Tomcat、配置Tomcat、部署应用和启动T... 目录Tomcat高效部署与性能优化一、引言二、Tomcat高效部署三、Tomcat性能优化总结Tom

SpringBoot中的404错误:原因、影响及解决策略

《SpringBoot中的404错误:原因、影响及解决策略》本文详细介绍了SpringBoot中404错误的出现原因、影响以及处理策略,404错误常见于URL路径错误、控制器配置问题、静态资源配置错误... 目录Spring Boot中的404错误:原因、影响及处理策略404错误的出现原因1. URL路径错

C++实现封装的顺序表的操作与实践

《C++实现封装的顺序表的操作与实践》在程序设计中,顺序表是一种常见的线性数据结构,通常用于存储具有固定顺序的元素,与链表不同,顺序表中的元素是连续存储的,因此访问速度较快,但插入和删除操作的效率可能... 目录一、顺序表的基本概念二、顺序表类的设计1. 顺序表类的成员变量2. 构造函数和析构函数三、顺序表

python实现简易SSL的项目实践

《python实现简易SSL的项目实践》本文主要介绍了python实现简易SSL的项目实践,包括CA.py、server.py和client.py三个模块,文中通过示例代码介绍的非常详细,对大家的学习... 目录运行环境运行前准备程序实现与流程说明运行截图代码CA.pyclient.pyserver.py参