深度学习论文: A YOLO-like Algorithm for Audio Segmentation and Sound Event Detection及其PyTorch实现

本文主要是介绍深度学习论文: A YOLO-like Algorithm for Audio Segmentation and Sound Event Detection及其PyTorch实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

深度学习论文: A YOLO-like Algorithm for Audio Segmentation and Sound Event Detection及其PyTorch实现
You Only Hear Once: A YOLO-like Algorithm for Audio Segmentation and Sound Event Detection
PDF: https://arxiv.org/pdf/2109.00962.pdf
PyTorch代码: https://github.com/shanglianlm0525/CvPytorch
PyTorch代码: https://github.com/shanglianlm0525/PyTorch-Networks

1 概述

常见的声音分割(audio segmentation)方法可以分为两类:

  • distance-based segmentation:通过欧氏距离或者贝叶斯信息准则,通过声音变化的波峰将声音划分为不同的片段,然后检测每个片段的声音类别。
  • segmentation-by-classification:将声音划分为10-25ms的帧,然后对帧进行分类。

You Only Hear Once (YOHO) 将声音边界的检测转化为一个基于帧的回归问题,即检测声音的类别以及它的开始和结束点。

2 You Only Hear Once (YOHO)

2-1 网络结构

YOHO的输入特征采用log-mel spectrograms,输入维数依赖于声音序列的长度和mel spectrogram的规格。这里 music-speech 检测的输入包含801 times steps 和 64 frequency bins。在每个time step,第一个神经元二分类来检测是一个声音类别的存在与否,第二和第三个神经元用来回归各自声音类别的开始和结束位置。
在这里插入图片描述
损失函数使用sum squared error
在这里插入图片描述

2-2 music-speech detection 输出示例

music-speech detection 输出 music 和 speech 两个示例,因此在每个time step有六个神经元,如长为6s的音频示例,每个输出的time step对应0.307s, 因为有26个分配。输出层的所有神经元后接sigmoid 激活函数,回归的输出归一化到0和1之间。
在这里插入图片描述

2-3 标签示例

音频总时长8s, 音乐出现在0.2 to 4.3 s ,讲话出现在3.6 to 6.0 s。每一行对应一个 time step,为0.307s。此外回归的值归一化到了0和1之间,因此音乐的开始位置位于 0.2s / 0.307 = 0.65,即第一行。
在这里插入图片描述
Post-processing
后处理主要将升级网络的输出转换为人类可读信息。
median filtering 和 threshold-dependent smoothing用于消除虚假(spurious)音频事件的发生,如特别短的声音、相同类别声音中间小的停顿(if the duration of the audio event is too short or if the silence between consecutive events of the same acoustic class is too short, we remove the occurrence.)。

3 Datasets

3-1 Music-Speech Detection

在这里插入图片描述

3-2 TUT Sound Event Detection

在这里插入图片描述

3-3 Urban-SED

在这里插入图片描述

3-4 Speed of Prediction

在这里插入图片描述

这篇关于深度学习论文: A YOLO-like Algorithm for Audio Segmentation and Sound Event Detection及其PyTorch实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/606188

相关文章

MyBatis-Plus逻辑删除实现过程

《MyBatis-Plus逻辑删除实现过程》本文介绍了MyBatis-Plus如何实现逻辑删除功能,包括自动填充字段、配置与实现步骤、常见应用场景,并展示了如何使用remove方法进行逻辑删除,逻辑删... 目录1. 逻辑删除的必要性编程1.1 逻辑删除的定义1.2 逻辑删php除的优点1.3 适用场景2.

C#借助Spire.XLS for .NET实现在Excel中添加文档属性

《C#借助Spire.XLSfor.NET实现在Excel中添加文档属性》在日常的数据处理和项目管理中,Excel文档扮演着举足轻重的角色,本文将深入探讨如何在C#中借助强大的第三方库Spire.... 目录为什么需要程序化添加Excel文档属性使用Spire.XLS for .NET库实现文档属性管理Sp

Python+FFmpeg实现视频自动化处理的完整指南

《Python+FFmpeg实现视频自动化处理的完整指南》本文总结了一套在Python中使用subprocess.run调用FFmpeg进行视频自动化处理的解决方案,涵盖了跨平台硬件加速、中间素材处理... 目录一、 跨平台硬件加速:统一接口设计1. 核心映射逻辑2. python 实现代码二、 中间素材处

Java数组动态扩容的实现示例

《Java数组动态扩容的实现示例》本文主要介绍了Java数组动态扩容的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1 问题2 方法3 结语1 问题实现动态的给数组添加元素效果,实现对数组扩容,原始数组使用静态分配

Python实现快速扫描目标主机的开放端口和服务

《Python实现快速扫描目标主机的开放端口和服务》这篇文章主要为大家详细介绍了如何使用Python编写一个功能强大的端口扫描器脚本,实现快速扫描目标主机的开放端口和服务,感兴趣的小伙伴可以了解下... 目录功能介绍场景应用1. 网络安全审计2. 系统管理维护3. 网络故障排查4. 合规性检查报错处理1.

Python轻松实现Word到Markdown的转换

《Python轻松实现Word到Markdown的转换》在文档管理、内容发布等场景中,将Word转换为Markdown格式是常见需求,本文将介绍如何使用FreeSpire.DocforPython实现... 目录一、工具简介二、核心转换实现1. 基础单文件转换2. 批量转换Word文件三、工具特性分析优点局

Springboot3统一返回类设计全过程(从问题到实现)

《Springboot3统一返回类设计全过程(从问题到实现)》文章介绍了如何在SpringBoot3中设计一个统一返回类,以实现前后端接口返回格式的一致性,该类包含状态码、描述信息、业务数据和时间戳,... 目录Spring Boot 3 统一返回类设计:从问题到实现一、核心需求:统一返回类要解决什么问题?

Java使用Spire.Doc for Java实现Word自动化插入图片

《Java使用Spire.DocforJava实现Word自动化插入图片》在日常工作中,Word文档是不可或缺的工具,而图片作为信息传达的重要载体,其在文档中的插入与布局显得尤为关键,下面我们就来... 目录1. Spire.Doc for Java库介绍与安装2. 使用特定的环绕方式插入图片3. 在指定位

Java使用Spire.Barcode for Java实现条形码生成与识别

《Java使用Spire.BarcodeforJava实现条形码生成与识别》在现代商业和技术领域,条形码无处不在,本教程将引导您深入了解如何在您的Java项目中利用Spire.Barcodefor... 目录1. Spire.Barcode for Java 简介与环境配置2. 使用 Spire.Barco

Java利用Spire.Doc for Java实现在模板的基础上创建Word文档

《Java利用Spire.DocforJava实现在模板的基础上创建Word文档》在日常开发中,我们经常需要根据特定数据动态生成Word文档,本文将深入探讨如何利用强大的Java库Spire.Do... 目录1. Spire.Doc for Java 库介绍与安装特点与优势Maven 依赖配置2. 通过替换