TensorRT模型优化模型部署(七)--Quantization量化(PTQ and QAT)(二)

2024-01-13 10:12

本文主要是介绍TensorRT模型优化模型部署(七)--Quantization量化(PTQ and QAT)(二),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

系列文章目录

第一章 TensorRT优化部署(一)–TensorRT和ONNX基础
第二章 TensorRT优化部署(二)–剖析ONNX架构
第三章 TensorRT优化部署(三)–ONNX注册算子
第四章 TensorRT模型优化部署(四)–Roofline model
第五章 TensorRT模型优化部署(五)–模型优化部署重点注意
第六章 TensorRT模型优化部署(六)–Quantization量化基础(一)
第七章 TensorRT模型优化模型部署(七)–Quantization量化(PTQ and QAT)(二)


文章目录

  • 系列文章目录
  • 前言
  • 一、(PTQ and quantization-analysis)
    • 1.1 PTQ 优缺点
    • 1.2 量化中的sensitive analysis
    • 1.2 Polygraphy
    • 1.3 FP16/INT8对计算资源的利用
  • 二、Quantization(QAT and kernel-fusion)
    • 1.Q/DQ是什么
    • 2.量化流程
  • 总结


前言

理解PTQ和QAT的区别,以及PTQ的优缺点和layer-wise sensitive analysis


一、(PTQ and quantization-analysis)

根据量化的时机,一般我们会把量化分为
• PTQ(Post-Training Quantization),训练后量化
• QAT(Quantization-Aware Training),训练时量化

在这里插入图片描述

PTQ一般是指对于训练好的模型,通过calibration算法等来获取dynamic range来进行量化。
但量化普遍上会产生精度下降。所以QAT为了弥补精度下降,在学习过程中通过Fine-tuning权
重来适应这种误差,实现精度下降的最小化。所以一般来讲,QAT的精度会高于PTQ。但并不
绝对。

1.1 PTQ 优缺点

PTQ(Post-training quantization)也被称作隐式量化(implicit quantization)。我们并不显式的
对算子添加量化节点(Q/DQ),calibration之后TensorRT根据情况进行量化。

优点
• 方便使用,不需要训练。可以在部署设备上直接跑
缺点

  1. 精度下降
    • 量化过程会导致精度下降。但PTQ没有类似于QAT这种fine-tuning的过程。所以权重不会更
    新来吸收这种误差
  2. 量化不可控
    • TensorRT会权衡量化后所产生的新添的计算或者访存, 是否用INT8还是FP16。
    • TensorRT中的kernel autotuning会选择核函数来做FP16/INT8的计算。来查看是否在CUDA
    core上跑还是在Tensor core上跑
    • 有可能FP16是在Tensor core上,但转为INT8之后就在CUDA core上了
  3. 层融合问题
    • 量化后有可能出现之前可以融合的层,不能融合了
    • 量化会添加reformatter这种更改tensor的格式的算子,如果本来融合的两个算子间添加了这
    个就不能被融合了
    • 比如有些算子支持int8,但某些不支持。之前可以融合的,但因为精度不同不能融合了

如果INT8量化后速度反而会比FP16/FP32要慢,我们可以从以上的2和3去分析并排查原因

1.2 量化中的sensitive analysis

从精度分析的角度去弥补PTQ的精度下降,我们可以进行layer-wise的量化分析。这种方法被称
作layer-wise sensitive analysis。每层对模型的重要度比例是不一样的,普遍来讲,模型框架中会有一些层的量化对精度的影响比较大。我们管它们叫做敏感层(sensitive layer)。对于这些敏感层的量化我们需要非常小心。尽量用FP16。敏感层一般靠近模型的输入输出

在这里插入图片描述

在这里插入图片描述

1.2 Polygraphy

Polygraphy 是英伟达推出的一款工具,用于可视化和分析深度学习模型的性能和效果。可以分析并查找模型精度下降并且影响比较大的地方

• onnxruntime与TensorRT engine的layer-wise的精度分析
• 输出每一层layer的权重histogram
• 截取影响整个网络中对精度影响最大的子网,并使用onnx-surgeon单独拿出来

在这里插入图片描述
跑一下Onnx模型再跑一下trt模型,两个模型对比,看激活值差别大概有多大,如果有一个层某个层精度下降比较大就会报错,然后把它取出来。

具体查看官方文档:https://github.com/NVIDIA/TensorRT/tree/main/tools/Polygraphy#examples

1.3 FP16/INT8对计算资源的利用

在做量化后,我们无法指定将量化后的conv或者gemm放在Tensor core还是在CUDA core上计算。这些是TensorRT在帮我们选择核函数的时候自动完成的。查看是否在用Tensor core可以通过下面三个办法

• 使用dlprof
• 使用nsight system
• 使用trtexec

DLProf
DLProf (Deep learning Profiler)工具可以把模型在GPU上的执行情况以TensorBoard的形式打印出来,分析TensorCore的使用情况。DLProf不支持Jetson系列的Profile。对于Jetson,我们可以使用Nsight system或者trtexec。具体查看官方文档:https://developer.nvidia.com/blog/profiling-and-optimizing-deep-neural-networks-with-dlprof-and-pyprof/

Nsight System/trtexec
如果是利用Nsight system的话,我们可以查看到哪一个kernel的时间占用率最高,之后从kernel的名字取推测这个kernel是否在用Tensor Core。
eg:

• h884 = HMMA = FP16 TensorCore
• i8816 = IMMA = INT8 TensorCore
• hcudnn = FP16 normal CUDA kernel (without TensorCore)
• icudnn = INT8 normal CUDA kernel (without TensorCore)
• scudnn = FP32 normal CUDA kernel (without TensorCore)

HMMA: Half-precision matrix multiply and accumulate
Nsight System/trtexec IMMA: Int-precision matrix multiply and accumulate

二、Quantization(QAT and kernel-fusion)

QAT(Quantization Aware Training)也被称作显式量化。我们明确的在模型中添加Q/DQ节点
(量化/反量化),来控制某一个算子的精度。并且通过fine-tuning来更新模型权重,让权重学习
并适应量化带来的精度误差。QAT的核心就是通过添加fake quantization,也就是Q/DQ节点,来模拟量化过程

1.Q/DQ是什么

Q/DQ node也被称作fake quantization node,是用来模拟fp32->int8的量化的scale和
shift(zero-point),以及int8->fp32的反量化的scale和shift(zero-point)。QAT通过Q和DQ
node里面存储的信息对fp32或者int8进行线性变换。
在这里插入图片描述

TensorRT对包含Q/DQ节点的onnx模型使用很多图优化,从而提高计算效率。主要分为
• Q/DQ fusion
通过层融合,将Q/DQ中的线性计算与conv或者linear这种线性计算融合在一起,实现int8计算
• Q/DQ Propagation
将Q节点尽量往前挪,将DQ节点尽量往后挪,让网络中int8计算的部分变得更长
在这里插入图片描述
在这里插入图片描述
QAT的学习过程
• 主要是训练weight来学习误差
Q/DQ中的scale和zero-point也是可以训练的。通过训练来学习最好的scale来表示dynamic range
• 没有PTQ中那样人为的指定calibration过程
不是因为没有calibration这个过程来做histogram的统计,而是因为QAT会利用fine-tuning的数
据集在训练的过程中同时进行calibration,这个过程是我们看不见的。这就是为什么我们在
pytorch创建QAT模型的时候需要选定calibration algorithm。

pytorch支持对已经训练好的模型自动添加Q/DQ节点。详细可以参考https://github.com/NVIDIA/TensorRT/tree/main/tools/pytorch-quantization

2.量化流程

  1. 先进行PTQ
    从多种calibration策略中选取最佳的算法,查看是否精度满足,如果不行再下一步。
  2. 进行partial-quantization
    通过layer-wise的sensitve analysis分析每一层的精度损失,尝试fp16 + int8的组合;fp16用在敏感层(网络入口和出口),int8用在计算密集处(网络的中间),查看是否精度满足,如果不行再下一步。(注意,这里同时也需要查看计算效率是否得到满足)
  3. 进行QAT来通过学习权重来适应误差
    选取PTQ实验中得到的最佳的calibration算法,通过fine-tuning来训练权重(大概是原本训练的10%个epoch),查看是否精度满足,如果不行查看模型设计是否有问题。(注意,这里同时也需要查看层融合是否被适用,以及Tensor core是否被用)

总结

下节介绍channel-level pruning的算法,以及如何使用L1-Norm来让权重稀疏

这篇关于TensorRT模型优化模型部署(七)--Quantization量化(PTQ and QAT)(二)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/601113

相关文章

mysql_mcp_server部署及应用实践案例

《mysql_mcp_server部署及应用实践案例》文章介绍了在CentOS7.5环境下部署MySQL_mcp_server的步骤,包括服务安装、配置和启动,还提供了一个基于Dify工作流的应用案例... 目录mysql_mcp_server部署及应用案例1. 服务安装1.1. 下载源码1.2. 创建独立

Nginx服务器部署详细代码实例

《Nginx服务器部署详细代码实例》Nginx是一个高性能的HTTP和反向代理web服务器,同时也提供了IMAP/POP3/SMTP服务,:本文主要介绍Nginx服务器部署的相关资料,文中通过代码... 目录Nginx 服务器SSL/TLS 配置动态脚本反向代理总结Nginx 服务器Nginx是一个‌高性

JavaWeb项目创建、部署、连接数据库保姆级教程(tomcat)

《JavaWeb项目创建、部署、连接数据库保姆级教程(tomcat)》:本文主要介绍如何在IntelliJIDEA2020.1中创建和部署一个JavaWeb项目,包括创建项目、配置Tomcat服务... 目录简介:一、创建项目二、tomcat部署1、将tomcat解压在一个自己找得到路径2、在idea中添加

Python + Streamlit项目部署方案超详细教程(非Docker版)

《Python+Streamlit项目部署方案超详细教程(非Docker版)》Streamlit是一款强大的Python框架,专为机器学习及数据可视化打造,:本文主要介绍Python+St... 目录一、针对 Alibaba Cloud linux/Centos 系统的完整部署方案1. 服务器基础配置(阿里

Spring Boot基于 JWT 优化 Spring Security 无状态登录实战指南

《SpringBoot基于JWT优化SpringSecurity无状态登录实战指南》本文介绍如何使用JWT优化SpringSecurity实现无状态登录,提高接口安全性,并通过实际操作步骤... 目录Spring Boot 实战:基于 JWT 优化 Spring Security 无状态登录一、先搞懂:为什

Java JAR 启动内存参数配置指南(从基础设置到性能优化)

《JavaJAR启动内存参数配置指南(从基础设置到性能优化)》在启动Java可执行JAR文件时,合理配置JVM内存参数是保障应用稳定性和性能的关键,本文将系统讲解如何通过命令行参数、环境变量等方式... 目录一、核心内存参数详解1.1 堆内存配置1.2 元空间配置(MetASPace)1.3 线程栈配置1.

Java领域模型示例详解

《Java领域模型示例详解》本文介绍了Java领域模型(POJO/Entity/VO/DTO/BO)的定义、用途和区别,强调了它们在不同场景下的角色和使用场景,文章还通过一个流程示例展示了各模型如何协... 目录Java领域模型(POJO / Entity / VO/ DTO / BO)一、为什么需要领域模

MongoDB搭建过程及单机版部署方法

《MongoDB搭建过程及单机版部署方法》MongoDB是一个灵活、高性能的NoSQL数据库,特别适合快速开发和大规模分布式系统,本文给大家介绍MongoDB搭建过程及单机版部署方法,感兴趣的朋友跟随... 目录前言1️⃣ 核心特点1、文档存储2、无模式(Schema-less)3、高性能4、水平扩展(Sh

深入理解Redis线程模型的原理及使用

《深入理解Redis线程模型的原理及使用》Redis的线程模型整体还是多线程的,只是后台执行指令的核心线程是单线程的,整个线程模型可以理解为还是以单线程为主,基于这种单线程为主的线程模型,不同客户端的... 目录1 Redis是单线程www.chinasem.cn还是多线程2 Redis如何保证指令原子性2.

Docker + Redis 部署集群的实现步骤

《Docker+Redis部署集群的实现步骤》本文详细介绍了在三台服务器上部署高可用Redis集群的完整流程,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋... 目录一、环境准备1. 服务器规划(3 台服务器)2. 防火墙配置(三台服务器均执行)3. 安装 docke