<<数据结构>>向上调整建堆和向下调整建堆的分析(特殊情况,时间复杂度分析,两种建堆方法对比,动图)

本文主要是介绍<<数据结构>>向上调整建堆和向下调整建堆的分析(特殊情况,时间复杂度分析,两种建堆方法对比,动图),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

今天,我来讲讲建堆算法中使用向上调整和向下调整。



目录

    • 建堆的应用
    • 向上调整建堆
    • 向下调整建堆
    • 向下调整建堆和向上调整建堆的选择



建堆的应用

在数据结构模拟堆中,我们可能会通过输入数组的元素来进行建堆或者在堆排序中,我们也需要建堆,那么建堆就有两种方法,一种从倒数第二层最右侧的父节点开始进行向下调整,直到把所有父节点都向下调整完;另外一种是从最后一个结点开始向上调整,直到每个结点都进行一次向上调整。

物理结构:实实在在在内存中是如何存储的
逻辑结构:想象出来的结构

如下面有一个数组,物理结构和逻辑结构分别如下:
在这里插入图片描述
如上面数组的逻辑结构,即不满足大堆,也不满足小堆,那么我们就应该进行建堆。假设要建大堆。

接下来,我来依次进行向上调整建堆和向下调整建堆。



向上调整建堆

如上面所说,我们需要找到最后一个结点,进行向上调整,如下
在这里插入图片描述
这个为向上调整建堆的第一趟,接下来,将倒数第二个结点继续建堆,即43,持续下去,直到把所有的结点都进行了向上调整,那么就完成了建堆的任务。

但是这样调整真的可以吗?
下面是代码:

int swap(int* a, int* b)
{int tmp = *a;*a = *b;*b = tmp;
}
Build_BigHeap(int* arr,int n)
{                                   //错误示范for (int i = n - 1; i >= 0; i--)//从最后一个结点开始,保证每个结点都能向上调整{int child = i;int parent = (child - 1) / 2;while (child > 0)              //单趟向上调整{if (arr[child] > arr[parent]){swap(&arr[child],&arr[parent]);child = parent;parent = (child - 1) / 2;}else{break;}}}
}
int main()
{int arr[] = {12,19,5,25,36,10,3,30,15,2,14,20,30,43,30};Build_BigHeap(arr,sizeof(arr)/sizeof(arr[0]));return 0;
}

建堆前:
在这里插入图片描述

建堆后:
在这里插入图片描述

观察可以发现,在我们建堆后的逻辑结构,大部分结点都满足了大堆的要求,即父节点大于、等于孩子结点,但是有一个父结点的值小于孩子结点,是哪个呢?就是19和25,这就奇怪了,其他结点都满足大堆的要求,为什么偏偏有两个结点不满足大堆的要求呢?不着急,我要画个小动图分析一下。

由于上面的问题由第八趟向上调整导致,我就不从第一趟排序画到问题出现的地方了,因为其他的几趟的向上调整并不是影响该问题的出现的因素。但是由于前面的调整没画,此次的第八趟向上调整与从第一次向上调整画到第八趟的向上调整结果有些不同,但是并不影响,因为我们主要分析的是19和25位置的原因所在。

在这里插入图片描述

上面就是25出现在了19后面的原因,所以我们最开始选择最后一个元素来进行向上调整,接着依次往上找结点进行向上调整的方法存在着小bug,比如第八趟向上调整中,将25调到了最后面的一层,然后,程序就继续去向上调整数字3的位置了,却不知道25还需要与19进行调整。

那么,我应该如何改进这个bug呢,我们直接选择从第二个结点开始,也就是下标为1的位置进行向上调整,接下来,程序依次调整到最后一个结点的位置,那么就不会有问题了。

代码如下:

int swap(int* a, int* b)
{int tmp = *a;*a = *b;*b = tmp;
}
Build_BigHeap(int* arr,int n)
{for (int i = 1; i <= n - 1; i++)//从第二个结点开始调整,保证每个结点都能向上调整{int child = i;int parent = (child - 1) / 2;while (child > 0)              //单趟向上调整{if (arr[child] > arr[parent]){swap(&arr[child],&arr[parent]);child = parent;parent = (child - 1) / 2;}else{break;}}}
}
int main()
{int arr[] = { 12,19,5,25,36,10,3,30,15,2,14,20,30,43,30 };Build_BigHeap(arr, sizeof(arr) / sizeof(arr[0]));return 0;
}

建堆前
在这里插入图片描述

建堆后
在这里插入图片描述

现在,该向上调整建堆的代码就满足要求了。

向上调整建堆的时间复杂度

假设最坏的情况下,每个结点都需要向上调整
在这里插入图片描述
由二叉树的性质可以得知,每层结点的个数是2^(h-1),在第几层的结点如果需要调整的话,最多需要向上调整h-1次。

那么,调整次数将与高度相关,如下
在这里插入图片描述



向下调整建堆

在向下调整建堆中,我们需要找到最后一个父节点,将该父节点与他的孩子结点进行比较,如果需要交换就进行交换,接下来,继续拿其他的父节点进行相同的比较,直到把所有的父节点比较完成,那么向下调整建堆就完成了。

假设我们需要建大堆,那么我们就先找到最后一个父结点,选出该父结点两个孩子结点中最大的那个结点,将该最大的孩子结点与父节点进行交换,这样就满足了大堆的要求了。

如下:第一趟向下调整的动图
在这里插入图片描述
由该动图可以得知,该替换后的父节点与他的孩子结点就满足了大堆的要求了,接下来,继续往前调整,直到把所有的父节点调整完,那么整个就满足了大堆了要求了。

我再举一个调整例子吧,我并没有一步一步调整上去,而是直接调整5结点,方便大家理解代码,所以下图的10结点还没有调整。
在这里插入图片描述

代码如下:

int swap(int* a, int* b)
{int tmp = *a;*a = *b;*b = tmp;
}
Build_BigHeap(int* arr, int n)
{for (int i = (n - 1 - 1) / 2; i >= 0; i--)//从最后一个父节点结点开始调整,保证每个父结点都能向下调整{int parent = i;int child = parent * 2 + 1;while (child < n)              //单趟向下调整{if (arr[child + 1] && arr[child + 1] > arr[child]){child++;}if (arr[child] > arr[parent]){swap(&arr[child], &arr[parent]);parent = child;child = parent * 2 + 1;}else{break;}}}
}
int main()
{int arr[] = { 12,19,5,25,36,10,3,30,15,2,14,20,30,43,30 };Build_BigHeap(arr, sizeof(arr) / sizeof(arr[0]));return 0;
}

建堆前:
在这里插入图片描述

建堆后:
在这里插入图片描述

向下调整建堆的时间复杂度

假设在最坏的情况下,所有的结点都需要向下调整。
在这里插入图片描述
那么时间复杂度的计算如下:
在这里插入图片描述



向下调整建堆和向上调整建堆的选择

向上调整建堆的时间复杂度是:O(N*logN)
向下调整建堆的时间复杂度是:O(N)
所以,大多数都会选择向下调整建堆。



如果觉得写得不错,可不可以动动小手,三连支持一下。

这篇关于<<数据结构>>向上调整建堆和向下调整建堆的分析(特殊情况,时间复杂度分析,两种建堆方法对比,动图)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/597213

相关文章

服务器集群同步时间手记

1.时间服务器配置(必须root用户) (1)检查ntp是否安装 [root@node1 桌面]# rpm -qa|grep ntpntp-4.2.6p5-10.el6.centos.x86_64fontpackages-filesystem-1.41-1.1.el6.noarchntpdate-4.2.6p5-10.el6.centos.x86_64 (2)修改ntp配置文件 [r

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

浅谈主机加固,六种有效的主机加固方法

在数字化时代,数据的价值不言而喻,但随之而来的安全威胁也日益严峻。从勒索病毒到内部泄露,企业的数据安全面临着前所未有的挑战。为了应对这些挑战,一种全新的主机加固解决方案应运而生。 MCK主机加固解决方案,采用先进的安全容器中间件技术,构建起一套内核级的纵深立体防护体系。这一体系突破了传统安全防护的局限,即使在管理员权限被恶意利用的情况下,也能确保服务器的安全稳定运行。 普适主机加固措施:

webm怎么转换成mp4?这几种方法超多人在用!

webm怎么转换成mp4?WebM作为一种新兴的视频编码格式,近年来逐渐进入大众视野,其背后承载着诸多优势,但同时也伴随着不容忽视的局限性,首要挑战在于其兼容性边界,尽管WebM已广泛适应于众多网站与软件平台,但在特定应用环境或老旧设备上,其兼容难题依旧凸显,为用户体验带来不便,再者,WebM格式的非普适性也体现在编辑流程上,由于它并非行业内的通用标准,编辑过程中可能会遭遇格式不兼容的障碍,导致操

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

6.1.数据结构-c/c++堆详解下篇(堆排序,TopK问题)

上篇:6.1.数据结构-c/c++模拟实现堆上篇(向下,上调整算法,建堆,增删数据)-CSDN博客 本章重点 1.使用堆来完成堆排序 2.使用堆解决TopK问题 目录 一.堆排序 1.1 思路 1.2 代码 1.3 简单测试 二.TopK问题 2.1 思路(求最小): 2.2 C语言代码(手写堆) 2.3 C++代码(使用优先级队列 priority_queue)

【北交大信息所AI-Max2】使用方法

BJTU信息所集群AI_MAX2使用方法 使用的前提是预约到相应的算力卡,拥有登录权限的账号密码,一般为导师组共用一个。 有浏览器、ssh工具就可以。 1.新建集群Terminal 浏览器登陆10.126.62.75 (如果是1集群把75改成66) 交互式开发 执行器选Terminal 密码随便设一个(需记住) 工作空间:私有数据、全部文件 加速器选GeForce_RTX_2080_Ti

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者