Python Matplotlib实训2:分析1996~2015年人口数据各个特征的分布与分散状况

本文主要是介绍Python Matplotlib实训2:分析1996~2015年人口数据各个特征的分布与分散状况,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

label1=['男性','女性']#标签
label2=['城镇','乡村']
ex=[0.01,0.01]#饼图:设定各项距离圆心n个半径#1.直方图
p1=plt.figure(figsize=(12,12))#设置画布大小
#子图1
a1=p1.add_subplot(2,2,1)
plt.bar(range(2),values[19,2:4],width=0.5,color='orange')
plt.ylabel('人口(万人)')
plt.ylim(0,80000)#设置当前图形y轴的范围
plt.xticks(range(2),label1)#指定x轴刻度的数目与取值
plt.title('1996年男、女人口数直方图')#子图2
b1=p1.add_subplot(2,2,2)
plt.bar(range(2),values[0,2:4],width=0.5,color='red')
plt.ylabel('人口(万人)')
plt.ylim(0,80000)
plt.xticks(range(2),label1)
plt.title('2015年男、女人口数直方图')#子图3
c1=p1.add_subplot(2,2,3)
plt.bar(range(2),values[19,4:6],width=0.5,color='orange')
plt.xlabel('类别')
plt.ylabel('人口(万人)')
plt.ylim(0,90000)
plt.xticks(range(2),label2)
plt.title('1996年城、乡人口数直方图')#子图4
d1=p1.add_subplot(2,2,4)
plt.bar(range(2),values[0,4:6],width=0.5,color='red')
plt.xlabel('类别')
plt.ylabel('人口(万人)')
plt.ylim(0,90000)
plt.xticks(range(2),label2)
plt.title('2015年城、乡人口数直方图')#2.饼图
p2=plt.figure(figsize=(8,8))
#子图1
a2=p2.add_subplot(2,2,1)
plt.pie(values[19,2:4],explode=ex,labels=label1,colors=['pink','crimson'],autopct='%1.1f%%')
plt.title('1996年男、女人口数饼图')#子图2
b2=p2.add_subplot(2,2,2)
plt.pie(values[0,2:4],explode=ex,labels=label1,colors=['PeachPuff','skyblue'],autopct='%1.1f%%')
plt.title('2015年男、女人口数饼图')#子图3
c2=p2.add_subplot(2,2,3)
plt.pie(values[19,4:6],explode=ex,labels=label2,colors=['pink','crimson'],autopct='%1.1f%%')
plt.title('1996年城、乡人口数饼图')#子图4
d2=p2.add_subplot(2,2,4)
plt.pie(values[0,4:6],explode=ex,labels=label2,colors=['PeachPuff','skyblue'],autopct='%1.1f%%')
plt.title('2015年城、乡人口数饼图')#3.箱线图
p3=plt.figure(figsize=(10,10))
plt.boxplot(values[0:20,1:6],notch=True,labels=['年末','男性','女性','城镇','乡村'],meanline=True)
plt.xlabel('类别')
plt.ylabel('人口(万人)')
plt.title('1996~2015年各特征人口箱线图')#显示
plt.savefig('d:/tmp/实训图2.png')
plt.show()

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

这篇关于Python Matplotlib实训2:分析1996~2015年人口数据各个特征的分布与分散状况的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/594887

相关文章

Python脚本实现自动删除C盘临时文件夹

《Python脚本实现自动删除C盘临时文件夹》在日常使用电脑的过程中,临时文件夹往往会积累大量的无用数据,占用宝贵的磁盘空间,下面我们就来看看Python如何通过脚本实现自动删除C盘临时文件夹吧... 目录一、准备工作二、python脚本编写三、脚本解析四、运行脚本五、案例演示六、注意事项七、总结在日常使用

Python将大量遥感数据的值缩放指定倍数的方法(推荐)

《Python将大量遥感数据的值缩放指定倍数的方法(推荐)》本文介绍基于Python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处理,并将所得处理后数据保存为新的遥感影像... 本文介绍基于python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处

python管理工具之conda安装部署及使用详解

《python管理工具之conda安装部署及使用详解》这篇文章详细介绍了如何安装和使用conda来管理Python环境,它涵盖了从安装部署、镜像源配置到具体的conda使用方法,包括创建、激活、安装包... 目录pytpshheraerUhon管理工具:conda部署+使用一、安装部署1、 下载2、 安装3

Python进阶之Excel基本操作介绍

《Python进阶之Excel基本操作介绍》在现实中,很多工作都需要与数据打交道,Excel作为常用的数据处理工具,一直备受人们的青睐,本文主要为大家介绍了一些Python中Excel的基本操作,希望... 目录概述写入使用 xlwt使用 XlsxWriter读取修改概述在现实中,很多工作都需要与数据打交

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

利用Python编写一个简单的聊天机器人

《利用Python编写一个简单的聊天机器人》这篇文章主要为大家详细介绍了如何利用Python编写一个简单的聊天机器人,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 使用 python 编写一个简单的聊天机器人可以从最基础的逻辑开始,然后逐步加入更复杂的功能。这里我们将先实现一个简单的

Linux使用dd命令来复制和转换数据的操作方法

《Linux使用dd命令来复制和转换数据的操作方法》Linux中的dd命令是一个功能强大的数据复制和转换实用程序,它以较低级别运行,通常用于创建可启动的USB驱动器、克隆磁盘和生成随机数据等任务,本文... 目录简介功能和能力语法常用选项示例用法基础用法创建可启动www.chinasem.cn的 USB 驱动

基于Python开发电脑定时关机工具

《基于Python开发电脑定时关机工具》这篇文章主要为大家详细介绍了如何基于Python开发一个电脑定时关机工具,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 简介2. 运行效果3. 相关源码1. 简介这个程序就像一个“忠实的管家”,帮你按时关掉电脑,而且全程不需要你多做