基于OpenCv的机器人手眼标定(九点标定法)《转载》

2024-01-11 13:40

本文主要是介绍基于OpenCv的机器人手眼标定(九点标定法)《转载》,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

转载链接:

基于OpenCv的机器人手眼标定(九点标定法)

对于初学者而言,对相机的标定经常模糊不清。不知道机器坐标与相机坐标如何转换,两个坐标系又是如何建立?
我们通常是利用张氏标定法,针对于相机的畸变进行标定,利用校正得到的参数对图形进行处理后再呈现出来。这个方法网上用的人很多,资料也较为全面。这里就不做说明了。本文主要是针对机械手的手眼标定,一般而言目前相机的畸变较小,精度也较为准确,使用该方法进行标定也能得到较好的效果。
首先,对于九点标定而言。我们使用到的是OpenCv中的estimateRigidTransform 函数。
函数定义如下:
Mat estimateRigidTransform(InputArraysrc,InputArraydst,boolfullAffine)
前两个参数,可以是 :src=srcImage (变换之前的图片Mat) dst=transImage(变换之后的图片Mat)
也可以: src=array(变换之前的关键点Array) dst=array(变换之后的关键点Array)
第三个参数: 1(全仿射变换,包括:rotation, translation, scaling,shearing,reflection)

其主要原理为:如果我们有一个点变换之前是[x,y,1],变换后是[x’,y’,1] 则fullAffine表示如下:

在这里插入图片描述

TX=Y
在这里插入图片描述

展开后表示

在这里插入图片描述

如果我们想求这【a-f】 6个变量需要有6个方程,也就是3组点。但是比三个点多呢?
比如:20个点。那就是用最小方差。
在这里插入图片描述
标定步骤
1、首先我们需要准备一块,标定板。如果条件不足,可以使用白纸画上九个圆进行代替。
在这里插入图片描述
2、相机位置,机械手位置全部固定好,标定针固定在机械手上,固定好后不能够再移动。标定针的位置一定要与夹手或吸盘之内的工具同一位置高度。
3、将标定板放到相机下方,位置区域要与机械手工作的区域一样,包括高度必须尽量一致,这是标定准确度的关键。
4、调整好相机焦距,拍照,然后识别9个圆圆心的坐标并进行记录。关于如何找圆,可以参考我的上一篇博文,对于圆形的查找十分精准。
5、将机械手依次移动到9个圆的圆心位置,记下机械手坐标

做完以上五步,我们会得到两个点集。一个为9个圆圆心坐标(points_camera),一个为9个圆心对应的机械手坐标(points_robot)。

	Mat warpMat;vector<Point2f>points_camera;vector<Point2f>points_robot;`vector<Point2f>points_camera;vector<Point2f>points_robot;warpMat =estimateRigidTransform(points_camera, points_robot, true);A = warpMat.ptr<double>(0)[0];B = warpMat.ptr<double>(0)[1];C = warpMat.ptr<double>(0)[2];D = warpMat.ptr<double>(1)[0];E = warpMat.ptr<double>(1)[1];F = warpMat.ptr<double>(1)[2];

得出来的6个double类型的参数,就是我们此次标定最终得到的标定参数了。
之后我们把检测得到的图像坐标(t_px,t_py)代入,就可以得到与之相对应的机械手坐标(t_rx,t_ry)
t_rx= (A * t_px) + B * t_py + C);
t_ry= (D * t_px) + E * t_py+ F);
至此标定结束,我们可以控制相机拍照进行定位,然后转换成机械手坐标,指哪打哪了。希望对初学者有所帮助,转载请注明出处。

这篇关于基于OpenCv的机器人手眼标定(九点标定法)《转载》的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/594547

相关文章

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

opencv 滚动条

参数介绍:createTrackbar( trackbarname , "hello" , &alpha_slider ,alpha_max ,  on_trackbar )  ;在标签中显示的文字(提示滑动条的用途) TrackbarName创建的滑动条要放置窗体的名字 “hello”滑动条的取值范围从 0 到 alpha_max (最小值只能为 zero).滑动后的值存放在

android-opencv-jni

//------------------start opencv--------------------@Override public void onResume(){ super.onResume(); //通过OpenCV引擎服务加载并初始化OpenCV类库,所谓OpenCV引擎服务即是 //OpenCV_2.4.3.2_Manager_2.4_*.apk程序包,存

OpenCV结构分析与形状描述符(11)椭圆拟合函数fitEllipse()的使用

操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C++11 算法描述 围绕一组2D点拟合一个椭圆。 该函数计算出一个椭圆,该椭圆在最小二乘意义上最好地拟合一组2D点。它返回一个内切椭圆的旋转矩形。使用了由[90]描述的第一个算法。开发者应该注意,由于数据点靠近包含的 Mat 元素的边界,返回的椭圆/旋转矩形数据

树莓派5_opencv笔记27:Opencv录制视频(无声音)

今日继续学习树莓派5 8G:(Raspberry Pi,简称RPi或RasPi)  本人所用树莓派5 装载的系统与版本如下:  版本可用命令 (lsb_release -a) 查询: Opencv 与 python 版本如下: 今天就水一篇文章,用树莓派摄像头,Opencv录制一段视频保存在指定目录... 文章提供测试代码讲解,整体代码贴出、测试效果图 目录 阶段一:录制一段

基于树梅派的视频监控机器人Verybot

最近这段时间做了一个基于树梅派 ( raspberry pi ) 的视频监控机器人平台 Verybot ,现在打算把这个机器人的一些图片、视频、设计思路进行公开,并且希望跟大家一起研究相关的各种问题,下面是两张机器人的照片:         图片1:                   图片2                    这个平台的基本组成是:

Verybot之OpenCV应用三:色标跟踪

下面的这个应用主要完成的是Verybot跟踪色标的功能,识别部分还是居于OpenCV编写,色标跟踪一般需要将图像的颜色模式进行转换,将RGB转换为HSV,因为对HSV格式下的图像进行识别时受光线的影响比较小,但是也有采用RGB模式来进行识别的情况,这种情况一般光线条件比较固定,背景跟识别物在颜色上很容易区分出来。         下面这个程序的流程大致是这样的:

Verybot之OpenCV应用二:霍夫变换查找圆

其实我是想通过这个程序来测试一下,OpenCV在Verybot上跑得怎么样,霍夫变换的原理就不多说了,下面是程序: #include "cv.h"#include "highgui.h"#include "stdio.h"int main(int argc, char** argv){cvNamedWindow("vedio",0);CvCapture* capture;i

Verybot之OpenCV应用一:安装与图像采集测试

在Verybot上安装OpenCV是很简单的,只需要执行:         sudo apt-get update         sudo apt-get install libopencv-dev         sudo apt-get install python-opencv         下面就对安装好的OpenCV进行一下测试,编写一个通过USB摄像头采

虚拟机ubuntu配置opencv和opencv_contrib

前期准备  1.下载opencv和opencv_contrib源码 opencv-4.6.0:https://opencv.org/releases/ opencv_contrib-4.6.0:https://github.com/opencv/opencv_contrib 在ubuntu直接下载或者在window上下好传到虚拟机里都可以 自己找个地方把他们解压,个人习惯在home下新建一