在甲骨文云上用 Ray +Vllm 部署 Mixtral 8*7B 模型

2024-01-08 16:52

本文主要是介绍在甲骨文云上用 Ray +Vllm 部署 Mixtral 8*7B 模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在甲骨文云上用 Ray +Vllm 部署 Mixtral 8*7B 模型

  • 0. 背景
  • 1. 甲骨文云 GPU 实例
  • 2. 配置 VCN 的 Security List
  • 3. 安装 Ray 和 Vllm
  • 4. 启动 Ray
  • 5. 启动 Vllm

0. 背景

根据好几个项目的需求,多次尝试 Mixtral-8x7B-Instruct-v0.1 这个模型,确实性能不错。

怎奈自己的个人电脑在配置上确实无法驾驭 Mixtral-8x7B-Instruct-v0.1 这个 46.7B 的模型(速度太慢),今天就尝试基于甲骨文云的 GPU 实例部署一下,来应对接下来的开发。

1. 甲骨文云 GPU 实例

今天部署 Mixtral-8x7B-Instruct-v0.1 这个 46.7B 的模型,使用了甲骨文云 4 个 VM.A10.2 GPU 实例,1个 VM.A10.2 有 2 个 24GB 的 A10 GPU,4个的话是 4 * 24GB * 2 = 192GB GPU。

在这里插入图片描述

2. 配置 VCN 的 Security List

配置私网 CIDR 10.0.0.0/24 的 All Protocols 是开放的。

注意:生产环境请仅开放必要端口

3. 安装 Ray 和 Vllm

pip install -U ray ray[client] ray[default] vllm

4. 启动 Ray

启动 head node,

ray start --disable-usage-stats --head --num-gpus 2 --include-dashboard True --dashboard-host 0.0.0.0 --dashboard-port 8265

To add another node to this Ray cluster,

ray start --disable-usage-stats --num-gpus 2 --address='<head node ip>:6379'

5. 启动 Vllm

这里使用了 8 个 GPU,所以设置 --tensor-parallel-size 的值是 8。

python -m vllm.entrypoints.openai.api_server --trust-remote-code --served-model-name gpt-4 --model mistralai/Mixtral-8x7B-Instruct-v0.1 --gpu-memory-utilization 1 --tensor-parallel-size 8 --port 8000

启动之后,通过 Ray Dashboard 查看 Cluster 的情况。

在这里插入图片描述

完结!

这篇关于在甲骨文云上用 Ray +Vllm 部署 Mixtral 8*7B 模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/584156

相关文章

Spring Security基于数据库的ABAC属性权限模型实战开发教程

《SpringSecurity基于数据库的ABAC属性权限模型实战开发教程》:本文主要介绍SpringSecurity基于数据库的ABAC属性权限模型实战开发教程,本文给大家介绍的非常详细,对大... 目录1. 前言2. 权限决策依据RBACABAC综合对比3. 数据库表结构说明4. 实战开始5. MyBA

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

tomcat多实例部署的项目实践

《tomcat多实例部署的项目实践》Tomcat多实例是指在一台设备上运行多个Tomcat服务,这些Tomcat相互独立,本文主要介绍了tomcat多实例部署的项目实践,具有一定的参考价值,感兴趣的可... 目录1.创建项目目录,测试文China编程件2js.创建实例的安装目录3.准备实例的配置文件4.编辑实例的

SpringBoot配置Ollama实现本地部署DeepSeek

《SpringBoot配置Ollama实现本地部署DeepSeek》本文主要介绍了在本地环境中使用Ollama配置DeepSeek模型,并在IntelliJIDEA中创建一个Sprin... 目录前言详细步骤一、本地配置DeepSeek二、SpringBoot项目调用本地DeepSeek前言随着人工智能技

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

通过Docker Compose部署MySQL的详细教程

《通过DockerCompose部署MySQL的详细教程》DockerCompose作为Docker官方的容器编排工具,为MySQL数据库部署带来了显著优势,下面小编就来为大家详细介绍一... 目录一、docker Compose 部署 mysql 的优势二、环境准备与基础配置2.1 项目目录结构2.2 基

CentOS 7部署主域名服务器 DNS的方法

《CentOS7部署主域名服务器DNS的方法》文章详细介绍了在CentOS7上部署主域名服务器DNS的步骤,包括安装BIND服务、配置DNS服务、添加域名区域、创建区域文件、配置反向解析、检查配置... 目录1. 安装 BIND 服务和工具2.  配置 BIND 服务3 . 添加你的域名区域配置4.创建区域

OpenManus本地部署实战亲测有效完全免费(最新推荐)

《OpenManus本地部署实战亲测有效完全免费(最新推荐)》文章介绍了如何在本地部署OpenManus大语言模型,包括环境搭建、LLM编程接口配置和测试步骤,本文给大家讲解的非常详细,感兴趣的朋友一... 目录1.概况2.环境搭建2.1安装miniconda或者anaconda2.2 LLM编程接口配置2

大数据spark3.5安装部署之local模式详解

《大数据spark3.5安装部署之local模式详解》本文介绍了如何在本地模式下安装和配置Spark,并展示了如何使用SparkShell进行基本的数据处理操作,同时,还介绍了如何通过Spark-su... 目录下载上传解压配置jdk解压配置环境变量启动查看交互操作命令行提交应用spark,一个数据处理框架

如何使用Docker部署FTP和Nginx并通过HTTP访问FTP里的文件

《如何使用Docker部署FTP和Nginx并通过HTTP访问FTP里的文件》本文介绍了如何使用Docker部署FTP服务器和Nginx,并通过HTTP访问FTP中的文件,通过将FTP数据目录挂载到N... 目录docker部署FTP和Nginx并通过HTTP访问FTP里的文件1. 部署 FTP 服务器 (