用python写梯度下降算法实现逻辑斯蒂回归

2024-01-07 03:18

本文主要是介绍用python写梯度下降算法实现逻辑斯蒂回归,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.logistic的理论基础

可参考网上一位大佬写的李航的《统计学习方法》笔记
pdf笔记文档链接:
链接:https://pan.baidu.com/s/1Gee9aOdNvemy5K6co1daZg
提取码:hlbb

具体算法步骤:
1
在这里插入图片描述

2.用python实现

数据使用iris数据集,iris数据集有三个类别,我们使用前两个类别作为因变量Y
iris数据集链接:
https://pan.baidu.com/s/17yA7n2so_EhxmXwn0RQXrQ
提取码:xboz

import numpy as np
import pandas as pd# 1.加载数据;数据预处理
iris = pd.read_csv("iris.csv")
# iris数据集有三类, 这里将第三列删除,只使用第一类和第二类
iris = iris[~iris['Species'].isin(['virginica'])]
X = iris.iloc[:, 1:5]
Y = iris.iloc[:, 5]
# 将iris前两类的名称改为0和1
Y = Y.replace("setosa", 0)
Y = Y.replace("versicolor", 1)# 将X转化成(x_1, x_2, ..., x_n, 1)的格式
X['one'] = 1
X = X.iloc[1:, :]
Y = Y.iloc[1:]
# 到这,数据预处理就完成了!# 2.逻辑斯蒂回归算法
def g(w, X, Y):return np.sum(np.log(1 + np.exp(np.dot(X, w))) - np.multiply(np.dot(X, w), np.expand_dims(Y, axis=1)), axis=1)class LOGISTIC(object):def __init__(self, X, Y, w=np.zeros(X.shape[1])):# w = (w1, w2, ..., wn, b)self.eta = 0.1self.epsilon = 0.001self.step = 0self.X = Xself.w = wself.Y = Ydef run(self):while True:P = np.exp(np.dot(self.X, self.w)) / (1 + np.exp(np.dot(self.X, self.w)))gradient_w = np.sum(np.multiply(self.X, np.expand_dims(P-self.Y, axis=1)), axis=0)gradient_w_norm = np.linalg.norm(gradient_w, ord=2)    # L2范数,等价于np.sqrt(np.sum(gradient_w**2))if gradient_w_norm < self.epsilon:return self.w, self.stepelse:w2 = self.w - self.eta*gradient_wif np.linalg.norm(g(w2, self.X, self.Y)-g(self.w, self.X, self.Y), ord=2) < self.epsilon or \np.linalg.norm(w2-self.w, ord=2) < self.epsilon:return self.w, self.stepself.w = w2self.step += 1# 测试
def test(w, x):p_0 = 1/(1+np.exp(np.dot(x, np.expand_dims(w, axis=1))))p_1 = 1 - p_0diff = p_0 - p_1diff[diff > 0] = 0diff[diff < 0] = 1return difflog = LOGISTIC(X=X, Y=Y)
train_w, train_step = log.run()
# train_w即为训练得到的权重,train_step为训练的步数
print(train_w)
print("步数:", train_step)test_cls = test(train_w, X)
# test_cls即为logistic的判断结果
# print(test_cls)# 计算准确率
acc = np.sum(test_cls - np.expand_dims(Y, axis=1) == 0)/test_cls.shape[0]
print("准确率:%.3f%%" % (acc*100))

运行结果:
在这里插入图片描述

注:代码是参照上面的算法步骤自己写的,如有问题,欢迎批评指正。

这篇关于用python写梯度下降算法实现逻辑斯蒂回归的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/578554

相关文章

pandas中位数填充空值的实现示例

《pandas中位数填充空值的实现示例》中位数填充是一种简单而有效的方法,用于填充数据集中缺失的值,本文就来介绍一下pandas中位数填充空值的实现,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是中位数填充?为什么选择中位数填充?示例数据结果分析完整代码总结在数据分析和机器学习过程中,处理缺失数

Golang HashMap实现原理解析

《GolangHashMap实现原理解析》HashMap是一种基于哈希表实现的键值对存储结构,它通过哈希函数将键映射到数组的索引位置,支持高效的插入、查找和删除操作,:本文主要介绍GolangH... 目录HashMap是一种基于哈希表实现的键值对存储结构,它通过哈希函数将键映射到数组的索引位置,支持

Pandas使用AdaBoost进行分类的实现

《Pandas使用AdaBoost进行分类的实现》Pandas和AdaBoost分类算法,可以高效地进行数据预处理和分类任务,本文主要介绍了Pandas使用AdaBoost进行分类的实现,具有一定的参... 目录什么是 AdaBoost?使用 AdaBoost 的步骤安装必要的库步骤一:数据准备步骤二:模型

使用Pandas进行均值填充的实现

《使用Pandas进行均值填充的实现》缺失数据(NaN值)是一个常见的问题,我们可以通过多种方法来处理缺失数据,其中一种常用的方法是均值填充,本文主要介绍了使用Pandas进行均值填充的实现,感兴趣的... 目录什么是均值填充?为什么选择均值填充?均值填充的步骤实际代码示例总结在数据分析和处理过程中,缺失数

Java对象转换的实现方式汇总

《Java对象转换的实现方式汇总》:本文主要介绍Java对象转换的多种实现方式,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录Java对象转换的多种实现方式1. 手动映射(Manual Mapping)2. Builder模式3. 工具类辅助映

如何使用 Python 读取 Excel 数据

《如何使用Python读取Excel数据》:本文主要介绍使用Python读取Excel数据的详细教程,通过pandas和openpyxl,你可以轻松读取Excel文件,并进行各种数据处理操... 目录使用 python 读取 Excel 数据的详细教程1. 安装必要的依赖2. 读取 Excel 文件3. 读

Go语言开发实现查询IP信息的MCP服务器

《Go语言开发实现查询IP信息的MCP服务器》随着MCP的快速普及和广泛应用,MCP服务器也层出不穷,本文将详细介绍如何在Go语言中使用go-mcp库来开发一个查询IP信息的MCP... 目录前言mcp-ip-geo 服务器目录结构说明查询 IP 信息功能实现工具实现工具管理查询单个 IP 信息工具的实现服

Python的time模块一些常用功能(各种与时间相关的函数)

《Python的time模块一些常用功能(各种与时间相关的函数)》Python的time模块提供了各种与时间相关的函数,包括获取当前时间、处理时间间隔、执行时间测量等,:本文主要介绍Python的... 目录1. 获取当前时间2. 时间格式化3. 延时执行4. 时间戳运算5. 计算代码执行时间6. 转换为指

利用Python调试串口的示例代码

《利用Python调试串口的示例代码》在嵌入式开发、物联网设备调试过程中,串口通信是最基础的调试手段本文将带你用Python+ttkbootstrap打造一款高颜值、多功能的串口调试助手,需要的可以了... 目录概述:为什么需要专业的串口调试工具项目架构设计1.1 技术栈选型1.2 关键类说明1.3 线程模

SpringBoot基于配置实现短信服务策略的动态切换

《SpringBoot基于配置实现短信服务策略的动态切换》这篇文章主要为大家详细介绍了SpringBoot在接入多个短信服务商(如阿里云、腾讯云、华为云)后,如何根据配置或环境切换使用不同的服务商,需... 目录目标功能示例配置(application.yml)配置类绑定短信发送策略接口示例:阿里云 & 腾