【数值分析】非线性方程求根,二分法,割线法,matlab实现

2024-01-06 07:04

本文主要是介绍【数值分析】非线性方程求根,二分法,割线法,matlab实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 基本问题

收敛阶
lim ⁡ k → ∞ ∣ e k + 1 ∣ ∣ e k ∣ r = C > 0 , r 为收敛阶 \lim_{k\to\infty} \frac{|e_{k+1}|}{|e_k|}^r=C>0 \,\,,\,\, r为收敛阶 klimekek+1r=C>0,r为收敛阶

2. 二分法

二分法是线性收敛的,如果指定精度 ϵ { \epsilon } ϵ ,则最多需要迭代步数
k = ⌈ log ⁡ 2 ( b − a ϵ ) ⌉ k= \lceil \log_2(\frac{b-a}{\epsilon }) \rceil k=log2(ϵba)⌉
matlab实现

%% 二分法例子
f = @(x) x^3-x-1;
format long
[x,i] = bisect(f,1,2,1e-5,1000)%% 二分法求非线性方程的根
% 输入函数,范围,精度,最大迭代次数
% 输出根,迭代次数
function [x,i] = bisect(f,a,b,eps,max_iter)if sign(f(a))~=sign(f(b))for i = 1:max_iter  c = a/2+b/2;if (b-a)<eps || abs(f(c))<epsx = c;breakendif sign(f(a))==sign(f(c))a = c;elseb = c;endendend
end

3. 不动点迭代加速

不动点 x = x ∗ {x=x ^{*} } x=x
x k + 1 = ϕ ( x k ) x_{k+1}=\phi(x_k) xk+1=ϕ(xk)
x k + 1 − x ∗ = ϕ ( x k ) − ϕ ( x ∗ ) = ϕ ′ ( ξ k ) ( x k − x ∗ ) , ξ k ∈ ( x k , x ∗ ) x_{k+1}-x ^{*} =\phi(x_k)-\phi(x ^{*} )=\phi'(\xi_k)(x_k-x ^{*} ) \,\,,\,\, \xi_k\in(x_k,x ^{*} ) xk+1x=ϕ(xk)ϕ(x)=ϕ(ξk)(xkx),ξk(xk,x)
let ϕ ′ ( ξ k ) = L \text{let} \,\,\, \phi'(\xi_k) =L letϕ(ξk)=L
x ∗ ≈ x k + 1 − L x k 1 − L = ϕ ˉ ( x ) x ^{*} \approx \frac{x_{k+1}-Lx_k}{1-L}=\bar\phi(x) x1Lxk+1Lxk=ϕˉ(x)
为加速后的不动点迭代格式。

6. 割线法

割线法比起牛顿迭代法不需要计算导数。
双点割线法
需要知道两个的函数初始值,不需要函数值异号。迭代公式如下:
x k + 1 = x k − f ( x k ) x k − x k − 1 f ( x k ) − f ( x k − 1 ) x_{k+1}=x_k-f(x_k) \frac{x_k-x_{k-1}}{f(x_k)-f(x_{k-1})} xk+1=xkf(xk)f(xk)f(xk1)xkxk1
收敛阶:
r = 5 + 1 2 ≈ 1.618 r= \frac{\sqrt{5}+1}{2} \approx 1.618 r=25 +11.618

matlab编程实现

%%  割线法例子
f = @(x) x-sin(x)-0.5;
[x,e,i] = cutSolve(f,1.4, 1.6, 0.01, 100)%% 双点割线法
% 输入函数,根所在的区间下限上限,精度,最大迭代次数
% 输出根,根的值,迭代次数
function [x,e,i] = cutSolve(f,a,b,eps,max_iter)x0 = a;x1 = b;for i = 1:max_iterx = -f(x0)*(x1-x0)/(f(x1)-f(x0))+x0if abs(x-x1)<=epse = abs(f(x));break;endx0=x1;x1=x;end
end

单点割线法
固定初始点,有
x k + 1 = x k − f ( x k ) x k − x 0 f ( x k ) − f ( x 0 ) x_{k+1}=x_k-f(x_k) \frac{x_k-x_{0}}{f(x_k)-f(x_{0})} xk+1=xkf(xk)f(xk)f(x0)xkx0
算是一种不动点迭代。

这篇关于【数值分析】非线性方程求根,二分法,割线法,matlab实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/575566

相关文章

SpringBoot实现微信小程序支付功能

《SpringBoot实现微信小程序支付功能》小程序支付功能已成为众多应用的核心需求之一,本文主要介绍了SpringBoot实现微信小程序支付功能,文中通过示例代码介绍的非常详细,对大家的学习或者工作... 目录一、引言二、准备工作(一)微信支付商户平台配置(二)Spring Boot项目搭建(三)配置文件

基于Python实现高效PPT转图片工具

《基于Python实现高效PPT转图片工具》在日常工作中,PPT是我们常用的演示工具,但有时候我们需要将PPT的内容提取为图片格式以便于展示或保存,所以本文将用Python实现PPT转PNG工具,希望... 目录1. 概述2. 功能使用2.1 安装依赖2.2 使用步骤2.3 代码实现2.4 GUI界面3.效

MySQL更新某个字段拼接固定字符串的实现

《MySQL更新某个字段拼接固定字符串的实现》在MySQL中,我们经常需要对数据库中的某个字段进行更新操作,本文就来介绍一下MySQL更新某个字段拼接固定字符串的实现,感兴趣的可以了解一下... 目录1. 查看字段当前值2. 更新字段拼接固定字符串3. 验证更新结果mysql更新某个字段拼接固定字符串 -

java实现延迟/超时/定时问题

《java实现延迟/超时/定时问题》:本文主要介绍java实现延迟/超时/定时问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java实现延迟/超时/定时java 每间隔5秒执行一次,一共执行5次然后结束scheduleAtFixedRate 和 schedu

Java Optional避免空指针异常的实现

《JavaOptional避免空指针异常的实现》空指针异常一直是困扰开发者的常见问题之一,本文主要介绍了JavaOptional避免空指针异常的实现,帮助开发者编写更健壮、可读性更高的代码,减少因... 目录一、Optional 概述二、Optional 的创建三、Optional 的常用方法四、Optio

C++ Sort函数使用场景分析

《C++Sort函数使用场景分析》sort函数是algorithm库下的一个函数,sort函数是不稳定的,即大小相同的元素在排序后相对顺序可能发生改变,如果某些场景需要保持相同元素间的相对顺序,可使... 目录C++ Sort函数详解一、sort函数调用的两种方式二、sort函数使用场景三、sort函数排序

在Android平台上实现消息推送功能

《在Android平台上实现消息推送功能》随着移动互联网应用的飞速发展,消息推送已成为移动应用中不可或缺的功能,在Android平台上,实现消息推送涉及到服务端的消息发送、客户端的消息接收、通知渠道(... 目录一、项目概述二、相关知识介绍2.1 消息推送的基本原理2.2 Firebase Cloud Me

Spring Boot项目中结合MyBatis实现MySQL的自动主从切换功能

《SpringBoot项目中结合MyBatis实现MySQL的自动主从切换功能》:本文主要介绍SpringBoot项目中结合MyBatis实现MySQL的自动主从切换功能,本文分步骤给大家介绍的... 目录原理解析1. mysql主从复制(Master-Slave Replication)2. 读写分离3.

Redis实现延迟任务的三种方法详解

《Redis实现延迟任务的三种方法详解》延迟任务(DelayedTask)是指在未来的某个时间点,执行相应的任务,本文为大家整理了三种常见的实现方法,感兴趣的小伙伴可以参考一下... 目录1.前言2.Redis如何实现延迟任务3.代码实现3.1. 过期键通知事件实现3.2. 使用ZSet实现延迟任务3.3

基于Python和MoviePy实现照片管理和视频合成工具

《基于Python和MoviePy实现照片管理和视频合成工具》在这篇博客中,我们将详细剖析一个基于Python的图形界面应用程序,该程序使用wxPython构建用户界面,并结合MoviePy、Pill... 目录引言项目概述代码结构分析1. 导入和依赖2. 主类:PhotoManager初始化方法:__in