【数值分析】非线性方程求根,二分法,割线法,matlab实现

2024-01-06 07:04

本文主要是介绍【数值分析】非线性方程求根,二分法,割线法,matlab实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 基本问题

收敛阶
lim ⁡ k → ∞ ∣ e k + 1 ∣ ∣ e k ∣ r = C > 0 , r 为收敛阶 \lim_{k\to\infty} \frac{|e_{k+1}|}{|e_k|}^r=C>0 \,\,,\,\, r为收敛阶 klimekek+1r=C>0,r为收敛阶

2. 二分法

二分法是线性收敛的,如果指定精度 ϵ { \epsilon } ϵ ,则最多需要迭代步数
k = ⌈ log ⁡ 2 ( b − a ϵ ) ⌉ k= \lceil \log_2(\frac{b-a}{\epsilon }) \rceil k=log2(ϵba)⌉
matlab实现

%% 二分法例子
f = @(x) x^3-x-1;
format long
[x,i] = bisect(f,1,2,1e-5,1000)%% 二分法求非线性方程的根
% 输入函数,范围,精度,最大迭代次数
% 输出根,迭代次数
function [x,i] = bisect(f,a,b,eps,max_iter)if sign(f(a))~=sign(f(b))for i = 1:max_iter  c = a/2+b/2;if (b-a)<eps || abs(f(c))<epsx = c;breakendif sign(f(a))==sign(f(c))a = c;elseb = c;endendend
end

3. 不动点迭代加速

不动点 x = x ∗ {x=x ^{*} } x=x
x k + 1 = ϕ ( x k ) x_{k+1}=\phi(x_k) xk+1=ϕ(xk)
x k + 1 − x ∗ = ϕ ( x k ) − ϕ ( x ∗ ) = ϕ ′ ( ξ k ) ( x k − x ∗ ) , ξ k ∈ ( x k , x ∗ ) x_{k+1}-x ^{*} =\phi(x_k)-\phi(x ^{*} )=\phi'(\xi_k)(x_k-x ^{*} ) \,\,,\,\, \xi_k\in(x_k,x ^{*} ) xk+1x=ϕ(xk)ϕ(x)=ϕ(ξk)(xkx),ξk(xk,x)
let ϕ ′ ( ξ k ) = L \text{let} \,\,\, \phi'(\xi_k) =L letϕ(ξk)=L
x ∗ ≈ x k + 1 − L x k 1 − L = ϕ ˉ ( x ) x ^{*} \approx \frac{x_{k+1}-Lx_k}{1-L}=\bar\phi(x) x1Lxk+1Lxk=ϕˉ(x)
为加速后的不动点迭代格式。

6. 割线法

割线法比起牛顿迭代法不需要计算导数。
双点割线法
需要知道两个的函数初始值,不需要函数值异号。迭代公式如下:
x k + 1 = x k − f ( x k ) x k − x k − 1 f ( x k ) − f ( x k − 1 ) x_{k+1}=x_k-f(x_k) \frac{x_k-x_{k-1}}{f(x_k)-f(x_{k-1})} xk+1=xkf(xk)f(xk)f(xk1)xkxk1
收敛阶:
r = 5 + 1 2 ≈ 1.618 r= \frac{\sqrt{5}+1}{2} \approx 1.618 r=25 +11.618

matlab编程实现

%%  割线法例子
f = @(x) x-sin(x)-0.5;
[x,e,i] = cutSolve(f,1.4, 1.6, 0.01, 100)%% 双点割线法
% 输入函数,根所在的区间下限上限,精度,最大迭代次数
% 输出根,根的值,迭代次数
function [x,e,i] = cutSolve(f,a,b,eps,max_iter)x0 = a;x1 = b;for i = 1:max_iterx = -f(x0)*(x1-x0)/(f(x1)-f(x0))+x0if abs(x-x1)<=epse = abs(f(x));break;endx0=x1;x1=x;end
end

单点割线法
固定初始点,有
x k + 1 = x k − f ( x k ) x k − x 0 f ( x k ) − f ( x 0 ) x_{k+1}=x_k-f(x_k) \frac{x_k-x_{0}}{f(x_k)-f(x_{0})} xk+1=xkf(xk)f(xk)f(x0)xkx0
算是一种不动点迭代。

这篇关于【数值分析】非线性方程求根,二分法,割线法,matlab实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/575566

相关文章

MyBatis-Plus逻辑删除实现过程

《MyBatis-Plus逻辑删除实现过程》本文介绍了MyBatis-Plus如何实现逻辑删除功能,包括自动填充字段、配置与实现步骤、常见应用场景,并展示了如何使用remove方法进行逻辑删除,逻辑删... 目录1. 逻辑删除的必要性编程1.1 逻辑删除的定义1.2 逻辑删php除的优点1.3 适用场景2.

C#借助Spire.XLS for .NET实现在Excel中添加文档属性

《C#借助Spire.XLSfor.NET实现在Excel中添加文档属性》在日常的数据处理和项目管理中,Excel文档扮演着举足轻重的角色,本文将深入探讨如何在C#中借助强大的第三方库Spire.... 目录为什么需要程序化添加Excel文档属性使用Spire.XLS for .NET库实现文档属性管理Sp

Python+FFmpeg实现视频自动化处理的完整指南

《Python+FFmpeg实现视频自动化处理的完整指南》本文总结了一套在Python中使用subprocess.run调用FFmpeg进行视频自动化处理的解决方案,涵盖了跨平台硬件加速、中间素材处理... 目录一、 跨平台硬件加速:统一接口设计1. 核心映射逻辑2. python 实现代码二、 中间素材处

MySQL字符串转数值的方法全解析

《MySQL字符串转数值的方法全解析》在MySQL开发中,字符串与数值的转换是高频操作,本文从隐式转换原理、显式转换方法、典型场景案例、风险防控四个维度系统梳理,助您精准掌握这一核心技能,需要的朋友可... 目录一、隐式转换:自动但需警惕的&ld编程quo;双刃剑”二、显式转换:三大核心方法详解三、典型场景

Java数组动态扩容的实现示例

《Java数组动态扩容的实现示例》本文主要介绍了Java数组动态扩容的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1 问题2 方法3 结语1 问题实现动态的给数组添加元素效果,实现对数组扩容,原始数组使用静态分配

Spring Boot Interceptor的原理、配置、顺序控制及与Filter的关键区别对比分析

《SpringBootInterceptor的原理、配置、顺序控制及与Filter的关键区别对比分析》本文主要介绍了SpringBoot中的拦截器(Interceptor)及其与过滤器(Filt... 目录前言一、核心功能二、拦截器的实现2.1 定义自定义拦截器2.2 注册拦截器三、多拦截器的执行顺序四、过

Python实现快速扫描目标主机的开放端口和服务

《Python实现快速扫描目标主机的开放端口和服务》这篇文章主要为大家详细介绍了如何使用Python编写一个功能强大的端口扫描器脚本,实现快速扫描目标主机的开放端口和服务,感兴趣的小伙伴可以了解下... 目录功能介绍场景应用1. 网络安全审计2. 系统管理维护3. 网络故障排查4. 合规性检查报错处理1.

Python轻松实现Word到Markdown的转换

《Python轻松实现Word到Markdown的转换》在文档管理、内容发布等场景中,将Word转换为Markdown格式是常见需求,本文将介绍如何使用FreeSpire.DocforPython实现... 目录一、工具简介二、核心转换实现1. 基础单文件转换2. 批量转换Word文件三、工具特性分析优点局

Springboot3统一返回类设计全过程(从问题到实现)

《Springboot3统一返回类设计全过程(从问题到实现)》文章介绍了如何在SpringBoot3中设计一个统一返回类,以实现前后端接口返回格式的一致性,该类包含状态码、描述信息、业务数据和时间戳,... 目录Spring Boot 3 统一返回类设计:从问题到实现一、核心需求:统一返回类要解决什么问题?

Java使用Spire.Doc for Java实现Word自动化插入图片

《Java使用Spire.DocforJava实现Word自动化插入图片》在日常工作中,Word文档是不可或缺的工具,而图片作为信息传达的重要载体,其在文档中的插入与布局显得尤为关键,下面我们就来... 目录1. Spire.Doc for Java库介绍与安装2. 使用特定的环绕方式插入图片3. 在指定位