Python蒸发散物理问题(微积分-线性代数-拉普拉斯和傅立叶变换)

本文主要是介绍Python蒸发散物理问题(微积分-线性代数-拉普拉斯和傅立叶变换),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

使用Python计算解决土壤物理问题的数值。这里数值过程用于求解微分方程,数值方法将微分转化为代数方程,可以使用传统的线性代数方法求解。

Python拉普拉斯变换求解微分方程示例

假设我们有微分方程
y ′ ′ + 2 y ′ + 16 y = cos ⁡ 4 t y^{\prime \prime}+2 y^{\prime}+16 y=\cos 4 t y′′+2y+16y=cos4t
对于未知函数 y ( t ) y(t) y(t)。该方程描述了物理学中具有摩擦力的受迫振荡器。作为初始条件,我们选择 y ( 0 ) = y ′ ( 0 ) = 0 y(0)=y^{\prime}(0)=0 y(0)=y(0)=0

拉普拉斯变换提供了求解此类方程的最方便的方法。首先,看看如果我们对未知函数的二阶导数进行拉普拉斯变换,会发生什么:
L ( y ′ ′ ) = ∫ 0 ∞ y ′ ′ ( t ) e − p t d t = [ y ′ ( t ) e − p t ] 0 ∞ − ( − p ) ∫ 0 ∞ y ′ ( t ) e − p t d t = p L ( y ′ ) − y ′ ( 0 ) \begin{gathered} L\left(y^{\prime \prime}\right)=\int_0^{\infty} y^{\prime \prime}(t) e^{-p t} d t= \\ {\left[y^{\prime}(t) e^{-p t}\right]_0^{\infty}-(-p) \int_0^{\infty} y^{\prime}(t) e^{-p t} d t=} \\ p L\left(y^{\prime}\right)-y^{\prime}(0) \end{gathered} L(y′′)=0y′′(t)eptdt=[y(t)ept]0(p)0y(t)eptdt=pL(y)y(0)
我们从第一行到第二行使用了部分积分。因此,我们可以通过乘以 p \mathrm{p} p 并减去一阶导数的初始条件来替换二阶导数。对于 L ( y ′ ) L\left(y^{\prime}\right) L(y) 我们做同样的事情并得到:
L ( y ′ ) = ∫ 0 ∞ y ′ ( t ) e − p t d t = p L ( y ) − y ( 0 ) L\left(y^{\prime}\right)=\int_0^{\infty} y^{\prime}(t) e^{-p t} d t=p L(y)-y(0) L(y)=0y(t)eptdt=pL(y)y(0)

L ( y ′ ′ ) = p 2 L ( y ) − p y ( 0 ) − y ′ ( 0 ) L\left(y^{\prime \prime}\right)=p^2 L(y)-p y(0)-y^{\prime}(0) L(y′′)=p2L(y)py(0)y(0)

这使我们能够对整个微分方程进行拉普拉斯变换。让我们切换到 Python 并启动 Jupyter notebook。定义符号和微分方程,以及未计算的拉普拉斯变换:

from sympy import *t, p = symbols('t, p')
y = Function('y')# The unevaluated Laplace transform:
Y = laplace_transform(y(t), t, p)eq = Eq(diff(y(t), (t, 2)) + 2 * diff(y(t), t) + 16*y(t), cos(4*t))
eq

16 y ( t ) + 2 d d t y ( t ) + d 2 d t 2 y ( t ) = cos ⁡ ( 4 t ) 16 y(t)+2 \frac{d}{d t} y(t)+\frac{d^2}{d t^2} y(t)=\cos (4 t) 16y(t)+2dtdy(t)+dt2d2y(t)=cos(4t)

Y

L t [ y ( t ) ] ( p ) \mathcal{L}_t[y(t)](p) Lt[y(t)](p)

右侧看起来像这样:

laplace_transform(eq.lhs, t, p )

p 2 L t [ y ( t ) ] ( p ) + 2 p L t [ y ( t ) ] ( p ) − p y ( 0 ) + 16 L t [ y ( t ) ] ( p ) − 2 y ( 0 ) − d d t y ( t ) ∣ t = 0 p^2 \mathcal{L}_t[y(t)](p)+2 p \mathcal{L}_t[y(t)](p)-p y(0)+16 \mathcal{L}_t[y(t)](p)-2 y(0)-\left.\frac{d}{d t} y(t)\right|_{t=0} p2Lt[y(t)](p)+2pLt[y(t)](p)py(0)+16Lt[y(t)](p)2y(0)dtdy(t) t=0

对于 d d t y ( t ) ∣ t = 0 \left.\frac{d}{d t} y(t)\right|_{t=0} dtdy(t) t=0,使用 Subs 类,它表示表达式的未评估替换。这正是我们所需要的。所以我们的初始条件是

initial ={y(0): 0,Subs(diff(y(t), t), t, 0): 0
}

现在我们可以将微分方程的拉普拉斯变换写为

eq_p=Eq(laplace_transform(eq.lhs,t,p).subs(initial),laplace_transform(eq.rhs,t,p,noconds=True)
)
eq_p

p 2 L t [ y ( t ) ] ( p ) + 2 p L t [ y ( t ) ] ( p ) + 16 L t [ y ( t ) ] ( p ) = p p 2 + 16 p^2 \mathcal{L}_t[y(t)](p)+2 p \mathcal{L}_t[y(t)](p)+16 \mathcal{L}_t[y(t)](p)=\frac{p}{p^2+16} p2Lt[y(t)](p)+2pLt[y(t)](p)+16Lt[y(t)](p)=p2+16p

求解 L[y]为:

solve(_,Y)

[ p / ( p ∗ ∗ 4 + 2 ∗ p ∗ ∗ 3 + 32 ∗ p ∗ ∗ 2 + 32 ∗ p + 256 ) ] [p /(p * * 4+2 * p * * 3+32 * p * * 2+32 * p+256)] [p/(p4+2p3+32p2+32p+256)]

sol_Y=_[0]

并从拉普拉斯变换回正常空间:

inverse_laplace_transform(sol_Y,p,t)

( 15 e t sin ⁡ ( 4 t ) − 4 15 sin ⁡ ( 15 t ) ) e − t θ ( t ) 120 \frac{\left(15 e^t \sin (4 t)-4 \sqrt{15} \sin (\sqrt{15} t)\right) e^{-t} \theta(t)}{120} 120(15etsin(4t)415 sin(15 t))etθ(t)

稍微整理一下:

expand(_)

sin ⁡ ( 4 t ) θ ( t ) 8 − 15 e − t sin ⁡ ( 15 t ) θ ( t ) 30 \frac{\sin (4 t) \theta(t)}{8}-\frac{\sqrt{15} e^{-t} \sin (\sqrt{15} t) \theta(t)}{30} 8sin(4t)θ(t)3015 etsin(15 t)θ(t)

collect(_,Heaviside(t))

( sin ⁡ ( 4 t ) 8 − 15 e − t sin ⁡ ( 15 t ) 30 ) θ ( t ) \left(\frac{\sin (4 t)}{8}-\frac{\sqrt{15} e^{-t} \sin (\sqrt{15} t)}{30}\right) \theta(t) (8sin(4t)3015 etsin(15 t))θ(t)

这是一个简洁的形式,我们将在此停止。 Heaviside θ θ \theta \theta θθ 函数使所有 t < 0 t<0 t<0 的值等于 0,这是可以的,因为我们只需要 t ≥ 0 t \geq 0 t0 的解。

请注意,拉普拉斯方法会自动处理初始条件,而无需从通解中确定常数!这使得它比大多数其他方法舒服得多。

最后,让我们绘制解:

p1=plot(_,(t,0,10),show=False,label='y(t)',legend=True,ylabel='')
p2=plot(cos(4*t),(t,0,10),show=False,label=r'$\cos4t$')
p1.append(p2[0])
p1.show()

上面的例子展示了如何解决具有齐次初始条件 ( y ( 0 ) = y ′ ( 0 ) = 0 ) \left(y(0)=y^{\prime}(0)=0\right) (y(0)=y(0)=0) 的问题。但拉普拉斯技术的使用当然不限于此。只需代入非齐次初始条件,求解 Y ( p ) Y(p) Y(p),进行拉普拉斯逆变换,就得到了解 y ( t ) y(t) y(t)

物理属性

土壤基质的几何形状、土壤结构、分形几何、孔隙空间的几何形状、比表面积、平均堆积密度、含水量和孔隙率、变量之间的关系、物理特性典型值
土壤棱柱的体积和体积分数、土壤固相、土壤质地、沉降定律

气相和气体扩散

传输方程、土壤中气体的扩散率、计算气体浓度、模拟土壤剖面中的一维稳态氧扩散、数值实现

温度和热流

热传导微分方程、土壤温度数据、热流方程的数值解、土壤热属性、数值实现

液相和土-水相互作用

水的性质、土壤水势、水势-含水量关系、液相和气相平衡

稳态水流和水力电导率

客孔介质中水的作用力、饱和土壤中的水流、饱和水力电导率、不饱和水力电导率

性质的变化

频率分布、概率密度函、转换、空间相关性、随机建模方法、数值实现

瞬态水流

质量守恒方程、水流、渗透、渗透数值模拟、数值实现

不规则三角网络

数字地形模型、不规则三角网络、数值实现、三角测量、GIS 函数、边界、三角形的几何性质、德劳内三角测量

三维水流

控制方程、数值公式、耦合地表流和地下流、数值实现、模拟、可视化和结果

蒸发

耦合传输建模

土壤中的溶质运移

蒸腾作用和植物-水的关系

大气边界条件

参阅一:亚图跨际
参阅二:亚图跨际

这篇关于Python蒸发散物理问题(微积分-线性代数-拉普拉斯和傅立叶变换)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/574335

相关文章

Python脚本实现自动删除C盘临时文件夹

《Python脚本实现自动删除C盘临时文件夹》在日常使用电脑的过程中,临时文件夹往往会积累大量的无用数据,占用宝贵的磁盘空间,下面我们就来看看Python如何通过脚本实现自动删除C盘临时文件夹吧... 目录一、准备工作二、python脚本编写三、脚本解析四、运行脚本五、案例演示六、注意事项七、总结在日常使用

Python将大量遥感数据的值缩放指定倍数的方法(推荐)

《Python将大量遥感数据的值缩放指定倍数的方法(推荐)》本文介绍基于Python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处理,并将所得处理后数据保存为新的遥感影像... 本文介绍基于python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处

python管理工具之conda安装部署及使用详解

《python管理工具之conda安装部署及使用详解》这篇文章详细介绍了如何安装和使用conda来管理Python环境,它涵盖了从安装部署、镜像源配置到具体的conda使用方法,包括创建、激活、安装包... 目录pytpshheraerUhon管理工具:conda部署+使用一、安装部署1、 下载2、 安装3

Python进阶之Excel基本操作介绍

《Python进阶之Excel基本操作介绍》在现实中,很多工作都需要与数据打交道,Excel作为常用的数据处理工具,一直备受人们的青睐,本文主要为大家介绍了一些Python中Excel的基本操作,希望... 目录概述写入使用 xlwt使用 XlsxWriter读取修改概述在现实中,很多工作都需要与数据打交

关于@MapperScan和@ComponentScan的使用问题

《关于@MapperScan和@ComponentScan的使用问题》文章介绍了在使用`@MapperScan`和`@ComponentScan`时可能会遇到的包扫描冲突问题,并提供了解决方法,同时,... 目录@MapperScan和@ComponentScan的使用问题报错如下原因解决办法课外拓展总结@

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超

MybatisGenerator文件生成不出对应文件的问题

《MybatisGenerator文件生成不出对应文件的问题》本文介绍了使用MybatisGenerator生成文件时遇到的问题及解决方法,主要步骤包括检查目标表是否存在、是否能连接到数据库、配置生成... 目录MyBATisGenerator 文件生成不出对应文件先在项目结构里引入“targetProje

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat