Python蒸发散物理问题(微积分-线性代数-拉普拉斯和傅立叶变换)

本文主要是介绍Python蒸发散物理问题(微积分-线性代数-拉普拉斯和傅立叶变换),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

使用Python计算解决土壤物理问题的数值。这里数值过程用于求解微分方程,数值方法将微分转化为代数方程,可以使用传统的线性代数方法求解。

Python拉普拉斯变换求解微分方程示例

假设我们有微分方程
y ′ ′ + 2 y ′ + 16 y = cos ⁡ 4 t y^{\prime \prime}+2 y^{\prime}+16 y=\cos 4 t y′′+2y+16y=cos4t
对于未知函数 y ( t ) y(t) y(t)。该方程描述了物理学中具有摩擦力的受迫振荡器。作为初始条件,我们选择 y ( 0 ) = y ′ ( 0 ) = 0 y(0)=y^{\prime}(0)=0 y(0)=y(0)=0

拉普拉斯变换提供了求解此类方程的最方便的方法。首先,看看如果我们对未知函数的二阶导数进行拉普拉斯变换,会发生什么:
L ( y ′ ′ ) = ∫ 0 ∞ y ′ ′ ( t ) e − p t d t = [ y ′ ( t ) e − p t ] 0 ∞ − ( − p ) ∫ 0 ∞ y ′ ( t ) e − p t d t = p L ( y ′ ) − y ′ ( 0 ) \begin{gathered} L\left(y^{\prime \prime}\right)=\int_0^{\infty} y^{\prime \prime}(t) e^{-p t} d t= \\ {\left[y^{\prime}(t) e^{-p t}\right]_0^{\infty}-(-p) \int_0^{\infty} y^{\prime}(t) e^{-p t} d t=} \\ p L\left(y^{\prime}\right)-y^{\prime}(0) \end{gathered} L(y′′)=0y′′(t)eptdt=[y(t)ept]0(p)0y(t)eptdt=pL(y)y(0)
我们从第一行到第二行使用了部分积分。因此,我们可以通过乘以 p \mathrm{p} p 并减去一阶导数的初始条件来替换二阶导数。对于 L ( y ′ ) L\left(y^{\prime}\right) L(y) 我们做同样的事情并得到:
L ( y ′ ) = ∫ 0 ∞ y ′ ( t ) e − p t d t = p L ( y ) − y ( 0 ) L\left(y^{\prime}\right)=\int_0^{\infty} y^{\prime}(t) e^{-p t} d t=p L(y)-y(0) L(y)=0y(t)eptdt=pL(y)y(0)

L ( y ′ ′ ) = p 2 L ( y ) − p y ( 0 ) − y ′ ( 0 ) L\left(y^{\prime \prime}\right)=p^2 L(y)-p y(0)-y^{\prime}(0) L(y′′)=p2L(y)py(0)y(0)

这使我们能够对整个微分方程进行拉普拉斯变换。让我们切换到 Python 并启动 Jupyter notebook。定义符号和微分方程,以及未计算的拉普拉斯变换:

from sympy import *t, p = symbols('t, p')
y = Function('y')# The unevaluated Laplace transform:
Y = laplace_transform(y(t), t, p)eq = Eq(diff(y(t), (t, 2)) + 2 * diff(y(t), t) + 16*y(t), cos(4*t))
eq

16 y ( t ) + 2 d d t y ( t ) + d 2 d t 2 y ( t ) = cos ⁡ ( 4 t ) 16 y(t)+2 \frac{d}{d t} y(t)+\frac{d^2}{d t^2} y(t)=\cos (4 t) 16y(t)+2dtdy(t)+dt2d2y(t)=cos(4t)

Y

L t [ y ( t ) ] ( p ) \mathcal{L}_t[y(t)](p) Lt[y(t)](p)

右侧看起来像这样:

laplace_transform(eq.lhs, t, p )

p 2 L t [ y ( t ) ] ( p ) + 2 p L t [ y ( t ) ] ( p ) − p y ( 0 ) + 16 L t [ y ( t ) ] ( p ) − 2 y ( 0 ) − d d t y ( t ) ∣ t = 0 p^2 \mathcal{L}_t[y(t)](p)+2 p \mathcal{L}_t[y(t)](p)-p y(0)+16 \mathcal{L}_t[y(t)](p)-2 y(0)-\left.\frac{d}{d t} y(t)\right|_{t=0} p2Lt[y(t)](p)+2pLt[y(t)](p)py(0)+16Lt[y(t)](p)2y(0)dtdy(t) t=0

对于 d d t y ( t ) ∣ t = 0 \left.\frac{d}{d t} y(t)\right|_{t=0} dtdy(t) t=0,使用 Subs 类,它表示表达式的未评估替换。这正是我们所需要的。所以我们的初始条件是

initial ={y(0): 0,Subs(diff(y(t), t), t, 0): 0
}

现在我们可以将微分方程的拉普拉斯变换写为

eq_p=Eq(laplace_transform(eq.lhs,t,p).subs(initial),laplace_transform(eq.rhs,t,p,noconds=True)
)
eq_p

p 2 L t [ y ( t ) ] ( p ) + 2 p L t [ y ( t ) ] ( p ) + 16 L t [ y ( t ) ] ( p ) = p p 2 + 16 p^2 \mathcal{L}_t[y(t)](p)+2 p \mathcal{L}_t[y(t)](p)+16 \mathcal{L}_t[y(t)](p)=\frac{p}{p^2+16} p2Lt[y(t)](p)+2pLt[y(t)](p)+16Lt[y(t)](p)=p2+16p

求解 L[y]为:

solve(_,Y)

[ p / ( p ∗ ∗ 4 + 2 ∗ p ∗ ∗ 3 + 32 ∗ p ∗ ∗ 2 + 32 ∗ p + 256 ) ] [p /(p * * 4+2 * p * * 3+32 * p * * 2+32 * p+256)] [p/(p4+2p3+32p2+32p+256)]

sol_Y=_[0]

并从拉普拉斯变换回正常空间:

inverse_laplace_transform(sol_Y,p,t)

( 15 e t sin ⁡ ( 4 t ) − 4 15 sin ⁡ ( 15 t ) ) e − t θ ( t ) 120 \frac{\left(15 e^t \sin (4 t)-4 \sqrt{15} \sin (\sqrt{15} t)\right) e^{-t} \theta(t)}{120} 120(15etsin(4t)415 sin(15 t))etθ(t)

稍微整理一下:

expand(_)

sin ⁡ ( 4 t ) θ ( t ) 8 − 15 e − t sin ⁡ ( 15 t ) θ ( t ) 30 \frac{\sin (4 t) \theta(t)}{8}-\frac{\sqrt{15} e^{-t} \sin (\sqrt{15} t) \theta(t)}{30} 8sin(4t)θ(t)3015 etsin(15 t)θ(t)

collect(_,Heaviside(t))

( sin ⁡ ( 4 t ) 8 − 15 e − t sin ⁡ ( 15 t ) 30 ) θ ( t ) \left(\frac{\sin (4 t)}{8}-\frac{\sqrt{15} e^{-t} \sin (\sqrt{15} t)}{30}\right) \theta(t) (8sin(4t)3015 etsin(15 t))θ(t)

这是一个简洁的形式,我们将在此停止。 Heaviside θ θ \theta \theta θθ 函数使所有 t < 0 t<0 t<0 的值等于 0,这是可以的,因为我们只需要 t ≥ 0 t \geq 0 t0 的解。

请注意,拉普拉斯方法会自动处理初始条件,而无需从通解中确定常数!这使得它比大多数其他方法舒服得多。

最后,让我们绘制解:

p1=plot(_,(t,0,10),show=False,label='y(t)',legend=True,ylabel='')
p2=plot(cos(4*t),(t,0,10),show=False,label=r'$\cos4t$')
p1.append(p2[0])
p1.show()

上面的例子展示了如何解决具有齐次初始条件 ( y ( 0 ) = y ′ ( 0 ) = 0 ) \left(y(0)=y^{\prime}(0)=0\right) (y(0)=y(0)=0) 的问题。但拉普拉斯技术的使用当然不限于此。只需代入非齐次初始条件,求解 Y ( p ) Y(p) Y(p),进行拉普拉斯逆变换,就得到了解 y ( t ) y(t) y(t)

物理属性

土壤基质的几何形状、土壤结构、分形几何、孔隙空间的几何形状、比表面积、平均堆积密度、含水量和孔隙率、变量之间的关系、物理特性典型值
土壤棱柱的体积和体积分数、土壤固相、土壤质地、沉降定律

气相和气体扩散

传输方程、土壤中气体的扩散率、计算气体浓度、模拟土壤剖面中的一维稳态氧扩散、数值实现

温度和热流

热传导微分方程、土壤温度数据、热流方程的数值解、土壤热属性、数值实现

液相和土-水相互作用

水的性质、土壤水势、水势-含水量关系、液相和气相平衡

稳态水流和水力电导率

客孔介质中水的作用力、饱和土壤中的水流、饱和水力电导率、不饱和水力电导率

性质的变化

频率分布、概率密度函、转换、空间相关性、随机建模方法、数值实现

瞬态水流

质量守恒方程、水流、渗透、渗透数值模拟、数值实现

不规则三角网络

数字地形模型、不规则三角网络、数值实现、三角测量、GIS 函数、边界、三角形的几何性质、德劳内三角测量

三维水流

控制方程、数值公式、耦合地表流和地下流、数值实现、模拟、可视化和结果

蒸发

耦合传输建模

土壤中的溶质运移

蒸腾作用和植物-水的关系

大气边界条件

参阅一:亚图跨际
参阅二:亚图跨际

这篇关于Python蒸发散物理问题(微积分-线性代数-拉普拉斯和傅立叶变换)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/574335

相关文章

Spring Boot中JSON数值溢出问题从报错到优雅解决办法

《SpringBoot中JSON数值溢出问题从报错到优雅解决办法》:本文主要介绍SpringBoot中JSON数值溢出问题从报错到优雅的解决办法,通过修改字段类型为Long、添加全局异常处理和... 目录一、问题背景:为什么我的接口突然报错了?二、为什么会发生这个错误?1. Java 数据类型的“容量”限制

如何使用 Python 读取 Excel 数据

《如何使用Python读取Excel数据》:本文主要介绍使用Python读取Excel数据的详细教程,通过pandas和openpyxl,你可以轻松读取Excel文件,并进行各种数据处理操... 目录使用 python 读取 Excel 数据的详细教程1. 安装必要的依赖2. 读取 Excel 文件3. 读

Python的time模块一些常用功能(各种与时间相关的函数)

《Python的time模块一些常用功能(各种与时间相关的函数)》Python的time模块提供了各种与时间相关的函数,包括获取当前时间、处理时间间隔、执行时间测量等,:本文主要介绍Python的... 目录1. 获取当前时间2. 时间格式化3. 延时执行4. 时间戳运算5. 计算代码执行时间6. 转换为指

利用Python调试串口的示例代码

《利用Python调试串口的示例代码》在嵌入式开发、物联网设备调试过程中,串口通信是最基础的调试手段本文将带你用Python+ttkbootstrap打造一款高颜值、多功能的串口调试助手,需要的可以了... 目录概述:为什么需要专业的串口调试工具项目架构设计1.1 技术栈选型1.2 关键类说明1.3 线程模

关于MongoDB图片URL存储异常问题以及解决

《关于MongoDB图片URL存储异常问题以及解决》:本文主要介绍关于MongoDB图片URL存储异常问题以及解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录MongoDB图片URL存储异常问题项目场景问题描述原因分析解决方案预防措施js总结MongoDB图

Python ZIP文件操作技巧详解

《PythonZIP文件操作技巧详解》在数据处理和系统开发中,ZIP文件操作是开发者必须掌握的核心技能,Python标准库提供的zipfile模块以简洁的API和跨平台特性,成为处理ZIP文件的首选... 目录一、ZIP文件操作基础三板斧1.1 创建压缩包1.2 解压操作1.3 文件遍历与信息获取二、进阶技

SpringBoot项目中报错The field screenShot exceeds its maximum permitted size of 1048576 bytes.的问题及解决

《SpringBoot项目中报错ThefieldscreenShotexceedsitsmaximumpermittedsizeof1048576bytes.的问题及解决》这篇文章... 目录项目场景问题描述原因分析解决方案总结项目场景javascript提示:项目相关背景:项目场景:基于Spring

Python Transformers库(NLP处理库)案例代码讲解

《PythonTransformers库(NLP处理库)案例代码讲解》本文介绍transformers库的全面讲解,包含基础知识、高级用法、案例代码及学习路径,内容经过组织,适合不同阶段的学习者,对... 目录一、基础知识1. Transformers 库简介2. 安装与环境配置3. 快速上手示例二、核心模

解决Maven项目idea找不到本地仓库jar包问题以及使用mvn install:install-file

《解决Maven项目idea找不到本地仓库jar包问题以及使用mvninstall:install-file》:本文主要介绍解决Maven项目idea找不到本地仓库jar包问题以及使用mvnin... 目录Maven项目idea找不到本地仓库jar包以及使用mvn install:install-file基

Python正则表达式语法及re模块中的常用函数详解

《Python正则表达式语法及re模块中的常用函数详解》这篇文章主要给大家介绍了关于Python正则表达式语法及re模块中常用函数的相关资料,正则表达式是一种强大的字符串处理工具,可以用于匹配、切分、... 目录概念、作用和步骤语法re模块中的常用函数总结 概念、作用和步骤概念: 本身也是一个字符串,其中