Python蒸发散物理问题(微积分-线性代数-拉普拉斯和傅立叶变换)

本文主要是介绍Python蒸发散物理问题(微积分-线性代数-拉普拉斯和傅立叶变换),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

使用Python计算解决土壤物理问题的数值。这里数值过程用于求解微分方程,数值方法将微分转化为代数方程,可以使用传统的线性代数方法求解。

Python拉普拉斯变换求解微分方程示例

假设我们有微分方程
y ′ ′ + 2 y ′ + 16 y = cos ⁡ 4 t y^{\prime \prime}+2 y^{\prime}+16 y=\cos 4 t y′′+2y+16y=cos4t
对于未知函数 y ( t ) y(t) y(t)。该方程描述了物理学中具有摩擦力的受迫振荡器。作为初始条件,我们选择 y ( 0 ) = y ′ ( 0 ) = 0 y(0)=y^{\prime}(0)=0 y(0)=y(0)=0

拉普拉斯变换提供了求解此类方程的最方便的方法。首先,看看如果我们对未知函数的二阶导数进行拉普拉斯变换,会发生什么:
L ( y ′ ′ ) = ∫ 0 ∞ y ′ ′ ( t ) e − p t d t = [ y ′ ( t ) e − p t ] 0 ∞ − ( − p ) ∫ 0 ∞ y ′ ( t ) e − p t d t = p L ( y ′ ) − y ′ ( 0 ) \begin{gathered} L\left(y^{\prime \prime}\right)=\int_0^{\infty} y^{\prime \prime}(t) e^{-p t} d t= \\ {\left[y^{\prime}(t) e^{-p t}\right]_0^{\infty}-(-p) \int_0^{\infty} y^{\prime}(t) e^{-p t} d t=} \\ p L\left(y^{\prime}\right)-y^{\prime}(0) \end{gathered} L(y′′)=0y′′(t)eptdt=[y(t)ept]0(p)0y(t)eptdt=pL(y)y(0)
我们从第一行到第二行使用了部分积分。因此,我们可以通过乘以 p \mathrm{p} p 并减去一阶导数的初始条件来替换二阶导数。对于 L ( y ′ ) L\left(y^{\prime}\right) L(y) 我们做同样的事情并得到:
L ( y ′ ) = ∫ 0 ∞ y ′ ( t ) e − p t d t = p L ( y ) − y ( 0 ) L\left(y^{\prime}\right)=\int_0^{\infty} y^{\prime}(t) e^{-p t} d t=p L(y)-y(0) L(y)=0y(t)eptdt=pL(y)y(0)

L ( y ′ ′ ) = p 2 L ( y ) − p y ( 0 ) − y ′ ( 0 ) L\left(y^{\prime \prime}\right)=p^2 L(y)-p y(0)-y^{\prime}(0) L(y′′)=p2L(y)py(0)y(0)

这使我们能够对整个微分方程进行拉普拉斯变换。让我们切换到 Python 并启动 Jupyter notebook。定义符号和微分方程,以及未计算的拉普拉斯变换:

from sympy import *t, p = symbols('t, p')
y = Function('y')# The unevaluated Laplace transform:
Y = laplace_transform(y(t), t, p)eq = Eq(diff(y(t), (t, 2)) + 2 * diff(y(t), t) + 16*y(t), cos(4*t))
eq

16 y ( t ) + 2 d d t y ( t ) + d 2 d t 2 y ( t ) = cos ⁡ ( 4 t ) 16 y(t)+2 \frac{d}{d t} y(t)+\frac{d^2}{d t^2} y(t)=\cos (4 t) 16y(t)+2dtdy(t)+dt2d2y(t)=cos(4t)

Y

L t [ y ( t ) ] ( p ) \mathcal{L}_t[y(t)](p) Lt[y(t)](p)

右侧看起来像这样:

laplace_transform(eq.lhs, t, p )

p 2 L t [ y ( t ) ] ( p ) + 2 p L t [ y ( t ) ] ( p ) − p y ( 0 ) + 16 L t [ y ( t ) ] ( p ) − 2 y ( 0 ) − d d t y ( t ) ∣ t = 0 p^2 \mathcal{L}_t[y(t)](p)+2 p \mathcal{L}_t[y(t)](p)-p y(0)+16 \mathcal{L}_t[y(t)](p)-2 y(0)-\left.\frac{d}{d t} y(t)\right|_{t=0} p2Lt[y(t)](p)+2pLt[y(t)](p)py(0)+16Lt[y(t)](p)2y(0)dtdy(t) t=0

对于 d d t y ( t ) ∣ t = 0 \left.\frac{d}{d t} y(t)\right|_{t=0} dtdy(t) t=0,使用 Subs 类,它表示表达式的未评估替换。这正是我们所需要的。所以我们的初始条件是

initial ={y(0): 0,Subs(diff(y(t), t), t, 0): 0
}

现在我们可以将微分方程的拉普拉斯变换写为

eq_p=Eq(laplace_transform(eq.lhs,t,p).subs(initial),laplace_transform(eq.rhs,t,p,noconds=True)
)
eq_p

p 2 L t [ y ( t ) ] ( p ) + 2 p L t [ y ( t ) ] ( p ) + 16 L t [ y ( t ) ] ( p ) = p p 2 + 16 p^2 \mathcal{L}_t[y(t)](p)+2 p \mathcal{L}_t[y(t)](p)+16 \mathcal{L}_t[y(t)](p)=\frac{p}{p^2+16} p2Lt[y(t)](p)+2pLt[y(t)](p)+16Lt[y(t)](p)=p2+16p

求解 L[y]为:

solve(_,Y)

[ p / ( p ∗ ∗ 4 + 2 ∗ p ∗ ∗ 3 + 32 ∗ p ∗ ∗ 2 + 32 ∗ p + 256 ) ] [p /(p * * 4+2 * p * * 3+32 * p * * 2+32 * p+256)] [p/(p4+2p3+32p2+32p+256)]

sol_Y=_[0]

并从拉普拉斯变换回正常空间:

inverse_laplace_transform(sol_Y,p,t)

( 15 e t sin ⁡ ( 4 t ) − 4 15 sin ⁡ ( 15 t ) ) e − t θ ( t ) 120 \frac{\left(15 e^t \sin (4 t)-4 \sqrt{15} \sin (\sqrt{15} t)\right) e^{-t} \theta(t)}{120} 120(15etsin(4t)415 sin(15 t))etθ(t)

稍微整理一下:

expand(_)

sin ⁡ ( 4 t ) θ ( t ) 8 − 15 e − t sin ⁡ ( 15 t ) θ ( t ) 30 \frac{\sin (4 t) \theta(t)}{8}-\frac{\sqrt{15} e^{-t} \sin (\sqrt{15} t) \theta(t)}{30} 8sin(4t)θ(t)3015 etsin(15 t)θ(t)

collect(_,Heaviside(t))

( sin ⁡ ( 4 t ) 8 − 15 e − t sin ⁡ ( 15 t ) 30 ) θ ( t ) \left(\frac{\sin (4 t)}{8}-\frac{\sqrt{15} e^{-t} \sin (\sqrt{15} t)}{30}\right) \theta(t) (8sin(4t)3015 etsin(15 t))θ(t)

这是一个简洁的形式,我们将在此停止。 Heaviside θ θ \theta \theta θθ 函数使所有 t < 0 t<0 t<0 的值等于 0,这是可以的,因为我们只需要 t ≥ 0 t \geq 0 t0 的解。

请注意,拉普拉斯方法会自动处理初始条件,而无需从通解中确定常数!这使得它比大多数其他方法舒服得多。

最后,让我们绘制解:

p1=plot(_,(t,0,10),show=False,label='y(t)',legend=True,ylabel='')
p2=plot(cos(4*t),(t,0,10),show=False,label=r'$\cos4t$')
p1.append(p2[0])
p1.show()

上面的例子展示了如何解决具有齐次初始条件 ( y ( 0 ) = y ′ ( 0 ) = 0 ) \left(y(0)=y^{\prime}(0)=0\right) (y(0)=y(0)=0) 的问题。但拉普拉斯技术的使用当然不限于此。只需代入非齐次初始条件,求解 Y ( p ) Y(p) Y(p),进行拉普拉斯逆变换,就得到了解 y ( t ) y(t) y(t)

物理属性

土壤基质的几何形状、土壤结构、分形几何、孔隙空间的几何形状、比表面积、平均堆积密度、含水量和孔隙率、变量之间的关系、物理特性典型值
土壤棱柱的体积和体积分数、土壤固相、土壤质地、沉降定律

气相和气体扩散

传输方程、土壤中气体的扩散率、计算气体浓度、模拟土壤剖面中的一维稳态氧扩散、数值实现

温度和热流

热传导微分方程、土壤温度数据、热流方程的数值解、土壤热属性、数值实现

液相和土-水相互作用

水的性质、土壤水势、水势-含水量关系、液相和气相平衡

稳态水流和水力电导率

客孔介质中水的作用力、饱和土壤中的水流、饱和水力电导率、不饱和水力电导率

性质的变化

频率分布、概率密度函、转换、空间相关性、随机建模方法、数值实现

瞬态水流

质量守恒方程、水流、渗透、渗透数值模拟、数值实现

不规则三角网络

数字地形模型、不规则三角网络、数值实现、三角测量、GIS 函数、边界、三角形的几何性质、德劳内三角测量

三维水流

控制方程、数值公式、耦合地表流和地下流、数值实现、模拟、可视化和结果

蒸发

耦合传输建模

土壤中的溶质运移

蒸腾作用和植物-水的关系

大气边界条件

参阅一:亚图跨际
参阅二:亚图跨际

这篇关于Python蒸发散物理问题(微积分-线性代数-拉普拉斯和傅立叶变换)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/574335

相关文章

Python将博客内容html导出为Markdown格式

《Python将博客内容html导出为Markdown格式》Python将博客内容html导出为Markdown格式,通过博客url地址抓取文章,分析并提取出文章标题和内容,将内容构建成html,再转... 目录一、为什么要搞?二、准备如何搞?三、说搞咱就搞!抓取文章提取内容构建html转存markdown

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Python Websockets库的使用指南

《PythonWebsockets库的使用指南》pythonwebsockets库是一个用于创建WebSocket服务器和客户端的Python库,它提供了一种简单的方式来实现实时通信,支持异步和同步... 目录一、WebSocket 简介二、python 的 websockets 库安装三、完整代码示例1.

揭秘Python Socket网络编程的7种硬核用法

《揭秘PythonSocket网络编程的7种硬核用法》Socket不仅能做聊天室,还能干一大堆硬核操作,这篇文章就带大家看看Python网络编程的7种超实用玩法,感兴趣的小伙伴可以跟随小编一起... 目录1.端口扫描器:探测开放端口2.简易 HTTP 服务器:10 秒搭个网页3.局域网游戏:多人联机对战4.

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

Python使用自带的base64库进行base64编码和解码

《Python使用自带的base64库进行base64编码和解码》在Python中,处理数据的编码和解码是数据传输和存储中非常普遍的需求,其中,Base64是一种常用的编码方案,本文我将详细介绍如何使... 目录引言使用python的base64库进行编码和解码编码函数解码函数Base64编码的应用场景注意

Python基于wxPython和FFmpeg开发一个视频标签工具

《Python基于wxPython和FFmpeg开发一个视频标签工具》在当今数字媒体时代,视频内容的管理和标记变得越来越重要,无论是研究人员需要对实验视频进行时间点标记,还是个人用户希望对家庭视频进行... 目录引言1. 应用概述2. 技术栈分析2.1 核心库和模块2.2 wxpython作为GUI选择的优

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.