行人重识别:reid-strong-baseline-master(罗浩)---triplet_sampler.py(数据加载,迭代器构建)

本文主要是介绍行人重识别:reid-strong-baseline-master(罗浩)---triplet_sampler.py(数据加载,迭代器构建),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        首先,reid-strong-baseline代码是罗浩博士在CVPR2019发表的《Bag of Tricks and A Strong Baseline for Deep Person Re-identification》,相关代码链接如下:https://github.com/michuanhaohao/reid-strong-baseline。这篇论文对我启发蛮大,也是我入门的基础。我也是小白,代码功底也不是很好,入门比较慢,目前正在研读他的代码。我的代码是在market1501数据集上跑的。

以下所阐述的内容是从以下博客学习来的基于度量学习的ReID代码实现(1)和行人重识别02-06:fast-reid(BoT)-pytorch编程规范(fast-reid为例)3-迭代器构建,数据加载-1。它们对我启发很大。

一、triplet_sampler.py具体位置

        在reid-strong-baseline-master/tools/train.py文件中找到train函数的make_data_loader函数。

         make_data_loader函数在reid-strong-baseline-master/data/build.py文件中,然后在该函数找到RandomIdentitySampler类。

        RandomIdentifySampler类是在reid-strong-baseline-master/data/samplers/triplet_sampler.py文件中。

 二、triplet_sampler.py解析

注释如下:

"""
@author:  liaoxingyu
@contact: liaoxingyu2@jd.com
"""import copy
import random
import torch
from collections import defaultdictimport numpy as np
from torch.utils.data.sampler import Samplerclass RandomIdentitySampler(Sampler):"""【首先随机采集N个ID,然后每个ID选择K个实例图像】Randomly sample N identities, then for each identity,randomly sample K instances, therefore batch size is N*K.Args:【训练数据的列表,包含了所有训练的数据,也就是多个数据源】- data_source (list): list of (img_path, pid, camid).【在每个batch中,对每个ID采集num_instances图像】- num_instances (int): number of instances per identity in a batch.- batch_size (int): number of examples in a batch."""def __init__(self, data_source, batch_size, num_instances):# 【包含了多个数据集的训练信息,例如图片路径,身份ID,摄像头编号等】self.data_source = data_sourceself.batch_size = batch_size# 【对每个身份采集的图像数目,本文设置(num_instances=4)】self.num_instances = num_instances# 【通过计算获得每个batch需要采集多少个身份ID,16=64/4】self.num_pids_per_batch = self.batch_size // self.num_instances# 【(写了一个dic,dic的key是id,value是各id对应的图片序号)用于存储该图片 序列号 保存于字典,方便查找转换】self.index_dic = defaultdict(list)# 【循环把(key:id==>行人的id,即pid)(value:各个id对应的图片序号)数据保存上述字典中】for index, (_, pid, _) in enumerate(self.data_source):self.index_dic[pid].append(index)# 【把index_dic的键值(身份ID)保存于self.pids中】self.pids = list(self.index_dic.keys())# estimate number of examples in an epochself.length = 0for pid in self.pids:idxs = self.index_dic[pid]num = len(idxs)if num < self.num_instances:num = self.num_instancesself.length += num - num % self.num_instances# 【iter返回的是一个epoch的数据,是一个list】def __iter__(self):batch_idxs_dict = defaultdict(list)for pid in self.pids:idxs = copy.deepcopy(self.index_dic[pid])if len(idxs) < self.num_instances:idxs = np.random.choice(idxs, size=self.num_instances, replace=True)random.shuffle(idxs)batch_idxs = []for idx in idxs:batch_idxs.append(idx)if len(batch_idxs) == self.num_instances:batch_idxs_dict[pid].append(batch_idxs)batch_idxs = []avai_pids = copy.deepcopy(self.pids)final_idxs = []while len(avai_pids) >= self.num_pids_per_batch:selected_pids = random.sample(avai_pids, self.num_pids_per_batch)for pid in selected_pids:batch_idxs = batch_idxs_dict[pid].pop(0)final_idxs.extend(batch_idxs)if len(batch_idxs_dict[pid]) == 0:avai_pids.remove(pid)self.length = len(final_idxs)return iter(final_idxs)def __len__(self):return self.length

1.def __init__()函数中的data_source包含很多信息,调试结果如图:

 2.def __init__()函数中的num_pids_per_batch参数,很重要:

 3.def __init__()函数中for index,(_,pid,_) in enumerate(self.data_source)的解释:

        首先,通过for循环将行人id存储在字典里,调试后可看到index_dic字典内容:

【注:pid从0开始,750结束,pid一共751个,即751个人】

 更加直观从数据集看:

4.def __init__()函数中self.pids = list(self.index_dic.keys())调试如下:

 5.def __init__()函数中RandomIdentitySampler最终取到的值:

目录

一、triplet_sampler.py具体位置

 二、triplet_sampler.py解析


这篇关于行人重识别:reid-strong-baseline-master(罗浩)---triplet_sampler.py(数据加载,迭代器构建)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/572016

相关文章

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

Three.js构建一个 3D 商品展示空间完整实战项目

《Three.js构建一个3D商品展示空间完整实战项目》Three.js是一个强大的JavaScript库,专用于在Web浏览器中创建3D图形,:本文主要介绍Three.js构建一个3D商品展... 目录引言项目核心技术1. 项目架构与资源组织2. 多模型切换、交互热点绑定3. 移动端适配与帧率优化4. 可

GSON框架下将百度天气JSON数据转JavaBean

《GSON框架下将百度天气JSON数据转JavaBean》这篇文章主要为大家详细介绍了如何在GSON框架下实现将百度天气JSON数据转JavaBean,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言一、百度天气jsON1、请求参数2、返回参数3、属性映射二、GSON属性映射实战1、类对象映

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装

MySQL中查询和展示LONGBLOB类型数据的技巧总结

《MySQL中查询和展示LONGBLOB类型数据的技巧总结》在MySQL中LONGBLOB是一种二进制大对象(BLOB)数据类型,用于存储大量的二进制数据,:本文主要介绍MySQL中查询和展示LO... 目录前言1. 查询 LONGBLOB 数据的大小2. 查询并展示 LONGBLOB 数据2.1 转换为十

使用SpringBoot+InfluxDB实现高效数据存储与查询

《使用SpringBoot+InfluxDB实现高效数据存储与查询》InfluxDB是一个开源的时间序列数据库,特别适合处理带有时间戳的监控数据、指标数据等,下面详细介绍如何在SpringBoot项目... 目录1、项目介绍2、 InfluxDB 介绍3、Spring Boot 配置 InfluxDB4、I

Python利用PySpark和Kafka实现流处理引擎构建指南

《Python利用PySpark和Kafka实现流处理引擎构建指南》本文将深入解剖基于Python的实时处理黄金组合:Kafka(分布式消息队列)与PySpark(分布式计算引擎)的化学反应,并构建一... 目录引言:数据洪流时代的生存法则第一章 Kafka:数据世界的中央神经系统消息引擎核心设计哲学高吞吐

Springboot项目构建时各种依赖详细介绍与依赖关系说明详解

《Springboot项目构建时各种依赖详细介绍与依赖关系说明详解》SpringBoot通过spring-boot-dependencies统一依赖版本管理,spring-boot-starter-w... 目录一、spring-boot-dependencies1.简介2. 内容概览3.核心内容结构4.

Java整合Protocol Buffers实现高效数据序列化实践

《Java整合ProtocolBuffers实现高效数据序列化实践》ProtocolBuffers是Google开发的一种语言中立、平台中立、可扩展的结构化数据序列化机制,类似于XML但更小、更快... 目录一、Protocol Buffers简介1.1 什么是Protocol Buffers1.2 Pro