Theano-Deep Learning Tutorials 笔记:Recurrent Neural Networks with Word Embeddings

本文主要是介绍Theano-Deep Learning Tutorials 笔记:Recurrent Neural Networks with Word Embeddings,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

教程地址:http://deeplearning.net/tutorial/rnnslu.html

相关论文:Grégoire Mesnil, Xiaodong He, Li Deng and Yoshua Bengio - Investigation of Recurrent Neural Network Architectures and Learning Methods for Spoken Language Understanding

Grégoire Mesnil, Yann Dauphin, Kaisheng Yao, Yoshua Bengio, Li Deng, Dilek Hakkani-Tur, Xiaodong He, Larry Heck, Gokhan Tur, Dong Yu and Geoffrey Zweig - Using Recurrent Neural Networks for Slot Filling in Spoken Language Understanding

Task

The Slot-Filling (Spoken Language Understanding)是给句子中每个word分配标签,是一个分类问题。

 

Dataset

数据集是DARPA的一个小型数据集:ATIS (Airline Travel Information System),下面例子使用了Inside Outside Beginning (IOB) representation。

Input (words)showflightsfromBostontoNewYorktoday
Output (labels)OOOB-deptOB-arrI-arrB-date

数据集中训练集句子4978个,word 56590个;测试集句子893,word 9198个;平均句长 15;The number of classes (different slots) is 128 including the O label (NULL).

 

As Microsoft Research people,把训练集中只出现一次的word标记为<UNK>,用这个标记去代表测试集中没见过的word;As Ronan Collobert and colleagues,把数字序列换成 DIGIT,如1984 变成 DIGITDIGITDIGITDIGIT。

 

把训练集分80%为训练集,20%为验证集。当F1 score为95%时,小数据集对性能的影响会大于0.6%。详见Microsoft Research people。

下面有3个实验评价指标:Precision,Recall,F1 score;

前两个看下图很好理解,在模式识别领域,一般都指定recall为多少情况下,比较precision的好坏。F1 score是根据Precision和Recall计算的。

教程使用conlleval PERL script(是一个计算上述指标的脚本代码)来评价性能。

 

Recurrent Neural Network Model

Raw input encoding

每个word对应一个token。在ATIS字典中,每个token对应一个index。每个句子都是一个index(int32)的数组。每个set(训练集,测试集,验证集)是 list of arrays of indexes(list是python的list)。python字典用来把 indexes 映射到 words 。

>>> sentence
array([383, 189,  13, 193, 208, 307, 195, 502, 260, 539,
7,  60,  72, 8, 350, 384], dtype=int32)
>>> map(lambda x: index2word[x], sentence)
['please', 'find', 'a', 'flight', 'from', 'miami', 'florida',
'to', 'las', 'vegas', '<UNK>', 'arriving', 'before', 'DIGIT', "o'clock", 'pm']

 

map(functioniterable...)  第一个参数为函数,第二个参数为输入

就是对 iterable 中每个元素都运行 function 函数,最后返回 list(list中为每个元素的函数运行结果)。

>>> def add100(x):
...     return x+100
... 
>>> hh = [11,22,33]
>>> map(add100,hh)
[111, 122, 133]

本例子中 function为add100,iterable为hh。hh中每个元素都加了100,然后返回 list。

lambda x: index2word[x] 这句是一个单行函数,所以对应map参数中的function。用 lambda 可以省去定义函数的过程(一般的定义就是用def....),代码更简洁。

 

所以map(lambda x: index2word[x], sentence)功能就是对sentence中每个数,都调用 index2word[x] 找出其对应的word。

 

同样地,通过 index 得出 label:

>>> labels
array([126, 126, 126, 126, 126,  48,  50, 126,  78, 123,  81, 126,  15,
14,  89,  89], dtype=int32)
>>> map(lambda x: index2label[x], labels)
['O', 'O', 'O', 'O', 'O', 'B-fromloc.city_name', 'B-fromloc.state_name',
'O', 'B-toloc.city_name', 'I-toloc.city_name', 'B-toloc.state_name',
'O', 'B-arrive_time.time_relative', 'B-arrive_time.time',
'I-arrive_time.time', 'I-arrive_time.time']

Context window

context window 就是根据指定的 window size (1,3,5...)把句子中的每个word及其前后(1,3,5...个)word提取出来。

返回结果为 list of list of indexes。

def contextwin(l, win):
'''
win :: int corresponding to the size of the window
given a list of indexes composing a sentence
l :: array containing the word indexes
it will return a list of list of indexes corresponding
to context windows surrounding each word in the sentence
'''
assert (win % 2) == 1
assert win >= 1
l = list(l)
lpadded = win // 2 * [-1] + l + win // 2 * [-1]
out = [lpadded[i:(i + win)] for i in range(len(l))]
assert len(out) == len(l)
return out


index -1 是word在句子开头结尾时,出现前面或后面没有word 这种情况就填上 -1。

看下面这个例子就很清楚: 其中0,1,2,3,4 为word的index。

>>> x
array([0, 1, 2, 3, 4], dtype=int32)
>>> contextwin(x, 3)
[[-1, 0, 1],
[ 0, 1, 2],
[ 1, 2, 3],
[ 2, 3, 4],
[ 3, 4,-1]]
>>> contextwin(x, 7)
[[-1, -1, -1, 0, 1, 2, 3],
[-1, -1,  0, 1, 2, 3, 4],
[-1,  0,  1, 2, 3, 4,-1],
[ 0,  1,  2, 3, 4,-1,-1],
[ 1,  2,  3, 4,-1,-1,-1]]


上面这个matrix中,每行表示一个 word 的context window。

 

Word embeddings

现在我们得到了contex windows,是一个 indexes 的矩阵,每个元素是一个index,对应一个 word(通过index2word可以得出word)。

现在需要把 index 转换成 embeddings (对应每个 word 的实数向量)。

import theano, numpy
from theano import tensor as T
# nv :: size of our vocabulary
# de :: dimension of the embedding space
# cs :: context window size
nv, de, cs = 1000, 50, 5
embeddings = theano.shared(0.2 * numpy.random.uniform(-1.0, 1.0, \
(nv+1, de)).astype(theano.config.floatX)) # add one for PADDING at the end
idxs = T.imatrix() # as many columns as words in the context window and as many lines as words in the sentence
x    = self.emb[idxs].reshape((idxs.shape[0], de*cs))

x为一个矩阵,大小为(句子中单词数,de 乘以 cs)。

 

例子: 句子中单词数为 5,de 为 50 ,cs 为 7,所以结果矩阵大小为(5,50*7)

>>> sample
array([0, 1, 2, 3, 4], dtype=int32)
>>> csample = contextwin(sample, 7)
[[-1, -1, -1, 0, 1, 2, 3],
[-1, -1,  0, 1, 2, 3, 4],
[-1,  0,  1, 2, 3, 4,-1],
[ 0,  1,  2, 3, 4,-1,-1],
[ 1,  2,  3, 4,-1,-1,-1]]
>>> f = theano.function(inputs=[idxs], outputs=x)
>>> f(csample)
array([[-0.08088442,  0.08458307,  0.05064092, ...,  0.06876887,
-0.06648078, -0.15192257],
[-0.08088442,  0.08458307,  0.05064092, ...,  0.11192625,
0.08745284,  0.04381778],
[-0.08088442,  0.08458307,  0.05064092, ..., -0.00937143,
0.10804889,  0.1247109 ],
[ 0.11038255, -0.10563177, -0.18760249, ..., -0.00937143,
0.10804889,  0.1247109 ],
[ 0.18738101,  0.14727569, -0.069544  , ..., -0.00937143,
0.10804889,  0.1247109 ]], dtype=float32)
>>> f(csample).shape
(5, 350)


这个matrix 是 context window word embeddings  序列。

每行为一个向量,对应句子中一个 word,现在很容易应用RNN了。

 

Elman recurrent neural network

(Elman) recurrent neural network (E-RNN)把当前时刻(time t)的输入以及前一时刻(time t-1)的隐藏层状态作为输入。

上节中的矩阵,每行就代表一个时刻 time t。第0行对应 t=0,第一行对应 t=1......。

 

E-RNN中需要学习的参数如下:

  • the word embeddings (real-valued matrix)
  • the initial hidden state (real-value vector)
  • two matrices for the linear projection of the input t and the previous hidden layer state t-1(神经网络中的权重W)
  • (optional) bias. Recommendation: don’t use it.
  • softmax classification layer on top

    超参数如下:

  • dimension of the word embedding(de,50)
  • size of the vocabulary
  • number of hidden units
  • number of classes
  • random seed + way to initialize the model
    class RNNSLU(object):
    ''' elman neural net model '''
    def __init__(self, nh, nc, ne, de, cs):
    '''
    nh :: dimension of the hidden layer
    nc :: number of classes
    ne :: number of word embeddings in the vocabulary
    de :: dimension of the word embeddings
    cs :: word window context size
    '''
    # parameters of the model
    self.emb = theano.shared(name='embeddings',
    value=0.2 * numpy.random.uniform(-1.0, 1.0,
    (ne+1, de))
    # add one for padding at the end
    .astype(theano.config.floatX))
    self.wx = theano.shared(name='wx',
    value=0.2 * numpy.random.uniform(-1.0, 1.0,
    (de * cs, nh))
    .astype(theano.config.floatX))
    self.wh = theano.shared(name='wh',
    value=0.2 * numpy.random.uniform(-1.0, 1.0,
    (nh, nh))
    .astype(theano.config.floatX))
    self.w = theano.shared(name='w',
    value=0.2 * numpy.random.uniform(-1.0, 1.0,
    (nh, nc))
    .astype(theano.config.floatX))
    self.bh = theano.shared(name='bh',
    value=numpy.zeros(nh,
    dtype=theano.config.floatX))
    self.b = theano.shared(name='b',
    value=numpy.zeros(nc,
    dtype=theano.config.floatX))
    self.h0 = theano.shared(name='h0',
    value=numpy.zeros(nh,
    dtype=theano.config.floatX))
    # bundle
    self.params = [self.emb, self.wx, self.wh, self.w,
    self.bh, self.b, self.h0]
    

    ne=nv (size of our vocabulary,1000)?

    emb大小为(ne+1,de)每行对应vocabulary中一个word,表明如何把这个word转换成一个de维的向量。emb这个matrix也是需要在训练中学习的。

     

    通过embedding matrix得出输入:

    idxs = T.imatrix()
    x = self.emb[idxs].reshape((idxs.shape[0], de*cs))
    y_sentence = T.ivector('y_sentence')  # labels
    


    用 scan (theano带的)来实现 递归:

    def recurrence(x_t, h_tm1):
    h_t = T.nnet.sigmoid(T.dot(x_t, self.wx)
    + T.dot(h_tm1, self.wh) + self.bh)
    s_t = T.nnet.softmax(T.dot(h_t, self.w) + self.b)
    return [h_t, s_t]
    [h, s], _ = theano.scan(fn=recurrence,
    sequences=x,
    outputs_info=[self.h0, None],
    n_steps=x.shape[0])
    p_y_given_x_sentence = s[:, 0, :]
    y_pred = T.argmax(p_y_given_x_sentence, axis=1)
    


    Theano自动计算梯度,最大化 log-likelihood:(这里和教程给的代码其实不一样,代码中损失函数,训练都是用的句子中最后一个词,这里给出的是整个句子,如 p_y_given_x_lastword = s[-1,0,:],-1表示取末尾)

     lr = T.scalar('lr')
    sentence_nll = -T.mean(T.log(p_y_given_x_sentence)
    [T.arange(x.shape[0]), y_sentence])
    sentence_gradients = T.grad(sentence_nll, self.params)
    sentence_updates = OrderedDict((p, p - lr*g)
    for p, g in
    zip(self.params, sentence_gradients))
    

     

    分类,训练函数:

    self.classify = theano.function(inputs=[idxs], outputs=y_pred)
    self.sentence_train = theano.function(inputs=[idxs, y_sentence, lr],
    outputs=sentence_nll,
    updates=sentence_updates)
    


    为了保证 word embeddings(50维向量) 在单位球上,需在每次更新后归一化:

    self.normalize = theano.function(inputs=[],
    updates={self.emb:
    self.emb /
    T.sqrt((self.emb**2)
    .sum(axis=1))
    .dimshuffle(0, 'x')})
    



     

    Training

    Updates

    使用随机梯度下降,一个句子为一个minibatch,每一个句子更新一次参数。每次更新后,都要对 word embeddings 归一化。

     

    Stopping Criterion

    Early-stoppong,按给定数量的epochs训练,每次epoch后都在验证集上测试 F1 score,保留最佳模型。

    Hyper-Parameter Selection

    使用 KISS random search。

    超参如下:

  • learning rate : uniform([0.05,0.01])
  • window size : random value from {3,...,19}
  • number of hidden units : random value from {100,200}
  • embedding dimension : random value from {50,100}


     

    Word Embedding Nearest Neighbors

    教程目的是用RNN做 word embedding,就是如何把 word 变成向量更好,通过训练,不断更新emb参数矩阵,最终得出结果。

    通过 L2 (欧氏距离)距离 和 cosine 距离两种方式判断 word 间的相似度,两种方式结果一样,k近邻如下:

    atlantabackap80butaircraftbusinessaaugustactuallycheap
    phoenixliveap57ifplanecoachpeopleseptemberprovideweekday
    denverlivesapupservicefirstdojanuarypricesweekdays
    tacomabothconnectionsaairplanefourthbutjunestopam
    columbushowtomorrownowseatingthriftnumbersdecembernumberearly
    seattlemebeforeamountstandtenthabbreviationnovemberflightsfo
    minneapolisoutearliestmorethatsecondifapriltheremilwaukee
    pittsburghotherconnectabbreviationonfifthupjulyservingjfk
    ontarioplanethriftrestrictionsturbopropthirdservejfkthankshortest
    montrealservicecoachmeanmeantwelfthdatabaseoctoberticketbwi
    philadelphiafaretodayinterestedamountsixthpassengersmayarelastest

    由于vocabulary只有500个words,所有效果一般。

这篇关于Theano-Deep Learning Tutorials 笔记:Recurrent Neural Networks with Word Embeddings的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/567984

相关文章

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一

vue解决子组件样式覆盖问题scoped deep

《vue解决子组件样式覆盖问题scopeddeep》文章主要介绍了在Vue项目中处理全局样式和局部样式的方法,包括使用scoped属性和深度选择器(/deep/)来覆盖子组件的样式,作者建议所有组件... 目录前言scoped分析deep分析使用总结所有组件必须加scoped父组件覆盖子组件使用deep前言

基于Java实现模板填充Word

《基于Java实现模板填充Word》这篇文章主要为大家详细介绍了如何用Java实现按产品经理提供的Word模板填充数据,并以word或pdf形式导出,有需要的小伙伴可以参考一下... Java实现按模板填充wor编程d本文讲解的需求是:我们需要把数据库中的某些数据按照 产品经理提供的 word模板,把数据

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

论文阅读笔记: Segment Anything

文章目录 Segment Anything摘要引言任务模型数据引擎数据集负责任的人工智能 Segment Anything Model图像编码器提示编码器mask解码器解决歧义损失和训练 Segment Anything 论文地址: https://arxiv.org/abs/2304.02643 代码地址:https://github.com/facebookresear

数学建模笔记—— 非线性规划

数学建模笔记—— 非线性规划 非线性规划1. 模型原理1.1 非线性规划的标准型1.2 非线性规划求解的Matlab函数 2. 典型例题3. matlab代码求解3.1 例1 一个简单示例3.2 例2 选址问题1. 第一问 线性规划2. 第二问 非线性规划 非线性规划 非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。2

【C++学习笔记 20】C++中的智能指针

智能指针的功能 在上一篇笔记提到了在栈和堆上创建变量的区别,使用new关键字创建变量时,需要搭配delete关键字销毁变量。而智能指针的作用就是调用new分配内存时,不必自己去调用delete,甚至不用调用new。 智能指针实际上就是对原始指针的包装。 unique_ptr 最简单的智能指针,是一种作用域指针,意思是当指针超出该作用域时,会自动调用delete。它名为unique的原因是这个

查看提交历史 —— Git 学习笔记 11

查看提交历史 查看提交历史 不带任何选项的git log-p选项--stat 选项--pretty=oneline选项--pretty=format选项git log常用选项列表参考资料 在提交了若干更新,又或者克隆了某个项目之后,你也许想回顾下提交历史。 完成这个任务最简单而又有效的 工具是 git log 命令。 接下来的例子会用一个用于演示的 simplegit