【CVPR2023】使用轻量 ToF 传感器的单目密集SLAM的多模态神经辐射场

本文主要是介绍【CVPR2023】使用轻量 ToF 传感器的单目密集SLAM的多模态神经辐射场,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

导读

本文贡献

本文方法

轻量级ToF传感器的感知原理

多模态隐式场景表示

时间滤波技术

实验

实验结果

消融实验

结论

未来工作


 

论文标题:Multi-Modal Neural Radiance Field for Monocular Dense SLAM with a Light-Weight ToF Sensor

论文链接:https://openaccess.thecvf.com/content/ICCV2023/html/Liu_Multi-Modal_Neural_Radiance_Field_for_Monocular_Dense_SLAM_with_a_ICCV_2023_paper.html

代码:https://zju3dv.github.io/tof_slam/

引用:Liu X, Li Y, Teng Y, et al. Multi-Modal Neural Radiance Field for Monocular Dense SLAM with a Light-Weight ToF Sensor[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2023: 1-11.

导读

这篇论文的主要目标是设计一种新型的dense SLAM(Simultaneous Localization and Mapping,同时定位与地图构建)系统,该系统的输入由单目相机的 RGB 序列和轻量级 ToF(Time-of-Flight)传感器的稀疏信号组成。dense SLAM在增强现实、室内机器人等领域有广泛的应用,现实生活中通常需要高精度和高分辨率的深度传感器,如ToF传感器或结构光传感器。然而,由于这些传感器在尺寸、重量和价格方面存在限制,因此直到最近才在少数高端移动设备中得以应用。

与此相反,轻量级ToF传感器具有成本效益高、紧凑且节能的特点,已经整合到数百种智能手机型号中。因此,本文的目标是充分利用这些轻量级ToF传感器,以实现dense SLAM,从而进一步促进增强现实、虚拟现实等应用的发展。

本文提出了第一个使用单目相机和轻型ToF传感器密集SLAM系统。具体来说,本文提出了一种多模态的隐式场景表示,支持对来自RGB相机和轻量级ToF传感器的信号进行渲染。同时,还引入了深度估计模型,以预测中间的高分辨率深度,以提供额外的监督。最终,本文还开发了一种时间滤波技术,以增强轻量级ToF传感器信号和深度预测性能。

本文贡献

  • 本文首次提出了基于轻量级ToF传感器和单眼相机的稠密SLAM系统

  • 本文提出了一种多模态的隐式场景表示方法,支持渲染来自RGB相机和轻量级ToF传感器的信号。这个表示方法允许系统同时处理不同领域的输入信号,有助于实现准确的相机姿态跟踪和精细的场景重建。

  • 为了提高轻量级ToF传感器的信号质量,作者引入了深度估计模型,用于预测中间的高分辨率深度信息。

  • 为了解决嘈杂信号和数据缺失的问题,作者开发了一种时间滤波技术,以增强轻量级ToF传感器信号和深度预测性能

本文方法

图片

 

本文的方法使用一个单目相机和一个轻量级的ToF传感器作为输入,同时恢复相机运动和场景结构。通过可微分渲染技术,本文的方法能够渲染多模态信号,包括彩色图像、深度图像和区域级别的L5信号。通过最小化重新渲染损失,优化场景结构和相机姿态。

轻量级ToF传感器的感知原理

轻量级ToF传感器旨在低成本、小尺寸和低能耗,并已大规模部署在移动设备上。与传统的ToF传感器相比,传统的ToF传感器提供高分辨率的深度测量,并测量到场景中每个像素的距离。

轻量级ToF传感器通常具有极低的分辨率(例如,8×8个区域),并测量每个区域的深度分布。在这里,我们以ST VL53L5CX [29](简称为L5)作为轻量级ToF传感器的代表,介绍这些传感器的感知原理。

如图2所示,L5通过计算在特定时间间隔内接收的光子数来测量深度分布。然后,结果被拟合为高斯分布,L5仅传输均值和方差以减少能耗和宽带负载。由于其低分辨率和高不确定性,以往的研究中没有探讨过将L5用于SLAM等下游应用。

图片

 

多模态隐式场景表示

几何编码与蒙版渲染

作者采用了一种被称为"Masked Rendering"的方法,灵感来自于MipNeRF中提出的集成位置编码(IPE)理论。这个方法被推广到了基于网格的场景表示中。

IPE的核心思想是通过低通滤波器传递输入特征,即如果特定特征的频率具有大于射线的周期,则该特征不受影响;否则,该特征将朝零缩小。

在网格表示的情况下,作者将来自不同级别特征网格的特征串联在一起,并使用渲染蒙版来根据当前渲染尺度屏蔽来自过高空间频率网格中提取的特征。作者将场景几何编码为包含四个层次的多级特征网格,其中包括区域级别的特征网格和像素级别的特征网格。作者使用蒙版渲染技术在几何编码中进行渲染,以同时获得区域级别的L5信号和像素级别的深度图像。

颜色编码

对于颜色信息,作者仅在最精细级别使用一个单独的特征网格和解码器来进行编码。在解码颜色时,作者还使用了射线方向,以获得3D点的颜色值。

L5信号、颜色和深度图像的渲染

作者使用体积渲染技术来渲染颜色和深度值。具体来说,对于每个颜色像素,沿着发射的射线采样N个点,并通过累积透明度和颜色值来获得最终的颜色像素值。

对于L5信号的渲染也类似,不同之处在于,对于每个L5区域的均值深度值,作者从该区域的中心发射射线,并通过累积距离值来获得最终的深度值。

渲染监督

最终,渲染出的颜色图像、L5信号和深度图像被用于监督系统,以进行相机姿态跟踪和地图构建。深度图像的监督还包括来自之前深度估计模型的深度预测。

时间滤波技术

正如前面提到的,我们使用DELTAR [14]来预测像素级深度图作为额外的监督。DELTAR是一个经过预训练的神经网络,它以L5信号和RGB图像作为输入,并预测相应的深度图。

我们观察到,当存在大量缺失或嘈杂的L5信号时,DELTAR预测的深度图可能会因缺失或嘈杂区域的固有深度模糊而包含严重伪影,从而进一步污染隐式特征的学习并降低SLAM系统的性能。这促使我们开发了一种显式的时间滤波技术(图4)

图片

 

具体来说,所提出的滤波算法包含两个步骤:预测步骤和更新步骤。

在预测步骤中,我们使用具有初始化姿态的神经渲染(Eq. 4)来预测时间戳k中的每个区域的ToF测量Xk = {µ1, σ1}:

图片

 

然后,使用当前的 L5 测量 Zk = {µ2, σ2} 来更新 Xk 为 X'k :

图片

 

实验

实验结果

定性重建结果:

图片

 

没有像素级深度监督的结果:

图片

 

重建过程中的定量比较:

图片

 

相机跟踪结果:

图片

 

消融实验

图片

 

运行时间比较:

图片

 

结论

本文提出了一种新颖的稠密视觉SLAM框架,使用RGB相机和轻量级ToF传感器,采用神经隐式场景表示。为了适应这种新的输入方式,论文提出了一种新颖的多模态特征网格,可以同时用于ToF传感器的区域级别渲染和其他高分辨率信号的像素级渲染。为了确保稳健的跟踪和地图构建,论文利用每个像素的深度预测作为附加监督,该监督进一步通过一种新颖的时间滤波策略进行改进。实验证明,所提出的方法能够在室内场景上提供准确的相机跟踪和高质量的重建结果。

未来工作

进一步改进系统,以克服ToF传感器在室外场景中的限制,并使其足够高效,以在移动机器人上运行。

这篇关于【CVPR2023】使用轻量 ToF 传感器的单目密集SLAM的多模态神经辐射场的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/567757

相关文章

Java使用Curator进行ZooKeeper操作的详细教程

《Java使用Curator进行ZooKeeper操作的详细教程》ApacheCurator是一个基于ZooKeeper的Java客户端库,它极大地简化了使用ZooKeeper的开发工作,在分布式系统... 目录1、简述2、核心功能2.1 CuratorFramework2.2 Recipes3、示例实践3

springboot security使用jwt认证方式

《springbootsecurity使用jwt认证方式》:本文主要介绍springbootsecurity使用jwt认证方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录前言代码示例依赖定义mapper定义用户信息的实体beansecurity相关的类提供登录接口测试提供一

go中空接口的具体使用

《go中空接口的具体使用》空接口是一种特殊的接口类型,它不包含任何方法,本文主要介绍了go中空接口的具体使用,具有一定的参考价值,感兴趣的可以了解一下... 目录接口-空接口1. 什么是空接口?2. 如何使用空接口?第一,第二,第三,3. 空接口几个要注意的坑坑1:坑2:坑3:接口-空接口1. 什么是空接

springboot security快速使用示例详解

《springbootsecurity快速使用示例详解》:本文主要介绍springbootsecurity快速使用示例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝... 目录创www.chinasem.cn建spring boot项目生成脚手架配置依赖接口示例代码项目结构启用s

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

java中使用POI生成Excel并导出过程

《java中使用POI生成Excel并导出过程》:本文主要介绍java中使用POI生成Excel并导出过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录需求说明及实现方式需求完成通用代码版本1版本2结果展示type参数为atype参数为b总结注:本文章中代码均为

Spring Boot3虚拟线程的使用步骤详解

《SpringBoot3虚拟线程的使用步骤详解》虚拟线程是Java19中引入的一个新特性,旨在通过简化线程管理来提升应用程序的并发性能,:本文主要介绍SpringBoot3虚拟线程的使用步骤,... 目录问题根源分析解决方案验证验证实验实验1:未启用keep-alive实验2:启用keep-alive扩展建

使用Java实现通用树形结构构建工具类

《使用Java实现通用树形结构构建工具类》这篇文章主要为大家详细介绍了如何使用Java实现通用树形结构构建工具类,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录完整代码一、设计思想与核心功能二、核心实现原理1. 数据结构准备阶段2. 循环依赖检测算法3. 树形结构构建4. 搜索子

GORM中Model和Table的区别及使用

《GORM中Model和Table的区别及使用》Model和Table是两种与数据库表交互的核心方法,但它们的用途和行为存在著差异,本文主要介绍了GORM中Model和Table的区别及使用,具有一... 目录1. Model 的作用与特点1.1 核心用途1.2 行为特点1.3 示例China编程代码2. Tab

SpringBoot使用OkHttp完成高效网络请求详解

《SpringBoot使用OkHttp完成高效网络请求详解》OkHttp是一个高效的HTTP客户端,支持同步和异步请求,且具备自动处理cookie、缓存和连接池等高级功能,下面我们来看看SpringB... 目录一、OkHttp 简介二、在 Spring Boot 中集成 OkHttp三、封装 OkHttp