多模态大模型Vary:扩充视觉Vocabulary,实现更细粒度的视觉感知

2024-01-04 00:28

本文主要是介绍多模态大模型Vary:扩充视觉Vocabulary,实现更细粒度的视觉感知,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

现代大型视觉语言模型(LVLMs)具有相同的视觉词汇- CLIP,它可以涵盖大多数常见的视觉任务。然而,对于一些需要密集和细粒度视觉感知的特殊视觉任务,例如文档级OCR或图表理解,特别是在非英语场景下,clip风格的词汇表在视觉知识的标记化方面可能会遇到效率较低的问题,甚至会出现词汇外问题。

解决方案

在此基础上,本文提出了一种高效、有效的扩展LVLMs视觉词汇量的方法——Vary。Vary的过程分为两部分:新的视觉词汇的生成和整合。

1.第一阶段,设计了一个词汇表网络和一个小型的仅解码器转换器,通过自回归产生所需的词汇表。
2.第二阶段,通过将新的视觉词汇表与原始词汇表(CLIP)合并来扩展vanilla视觉词汇表,为lvlm有效地提供新的特征,使lvlm能够快速获取新特性。
在这里插入图片描述

与流行的BLIP-2、MiniGPT4和LLaVA相比,Vary在保持原有功能的同时,具有更出色的细粒度感知和理解能力。具体来说,Vary能够胜任新的文档解析功能(OCR或标记转换),同时在DocVQA中实现78.2%的ANLS,在MMVet中实现36.2%。

Vary方法

一.算法架构

Vary有两种:Vary-tiny和Vary-base,如图2所示。作者设计了Vary-tiny来“书写”新的视觉词汇,而Vary-base则用来使用新的词汇。具体来说,Vary-tiny主要由一个词汇网络和一个微小的OPT-125M组成。在两个模块之间,添加了一个线性层来对齐通道尺寸。在Vary-tiny中没有文本输入分支,因为它主要关注细粒度感知。作者希望新的视觉词汇网络能够在处理人工图像,即文档和图表方面表现出色,以弥补CLIP的不足。同时,作者也期望在对自然图像进行标记时,它不会成为CLIP的噪声。因此,在生成过程中,作者将人工文档和图表数据作为正样本,将自然图像作为负样本来训练Vary-tiny。在完成上述过程后,提取词汇网络并将其添加到一个大型模型中以构建Vary-base。如图2下半部分所示,新旧词汇网络具有独立的输入嵌入层,并在LLM之前进行集成。在此阶段,冻结新旧视觉词汇网络的权值,解冻其他模块的权值。
在这里插入图片描述

二、视觉词汇

1.新词汇网络

作者使用SAM预训练的ViTDet图像编码器(基尺度)作为Vary新词汇网络的主要部分。由于SAM-base的输入分辨率为(1024×1024),而输出步幅为16,所以最后一层的特征形状为(H×W×C为64×64×256),无法与CLIP-L的输出(N×C为256×1024)对齐。因此,作者在SAM初始化网络的最后一层后面添加了两个卷积层,这是一个很好的token合并单元,如图3所示。第一个卷积层的核大小为3,目的是将7b - llm特征形状转移到32×32×512。第二个转换层的设置与第一个相同,可以进一步将输出形状转换为16×16×1024。之后,将输出特征平展为256×1024,以对齐CLIP-VIT的图像token形状。

2.生成短语中的数据引擎

Documnet数据 作者选择高分辨率文档图像-文本对作为新视觉词汇预训练的主要正数据集,因为密集OCR可以有效验证模型的细粒度图像感知能力。目前还没有公开的中英文文档数据集,所以作者创建了自己的数据集。首先从arXiv和CC-MAIN-2021-31-PDFUNTRUNCATED上的开放获取文章中收集pdf格式的文档作为英文部分,从互联网上的电子书中收集中文部分。然后使用PyMuPDF的fitz提取每个pdf页面中的文本信息,同时通过pdf2image将每个页面转换为PNG图像。在此过程中,分别构建了1M个中文文档和1M个英文文档图像-文本对进行训练。图表数据 作者发现目前的LVLMs并不擅长图表理解,尤其是中文图表,所以作者选择它作为另一个需要“写”进新词汇表的主要知识。对于图表图像-文本对,遵循渲染方式。选择matplotlib和pyecharts作为渲染工具。对于matplotlib风格的图表,构建了250k的中英文版本。而对于pyecharts,分别为中文和英文创建了50万个pyecharts。此外,作者将每个图表的文本基础真值转换为python- dictionary形式。图表中使用的文本,例如标题、x轴和y轴,是从互联网上下载的自然语言处理(NLP)语料库中随机选择的。

负样本自然图片 对于CLIP-VIT擅长的自然图像数据,需要保证新引入的词汇不会产生噪声。因此,作者构建了负的自然图像-文本对,以使新词汇网络在看到自然图像时能够正确编码。作者从COCO数据集中提取了120k张图像,每张图像对应一个文本。文本部分从以下句子中随机抽取:“It 's a image of nature”;“这是一张自然的照片”;“这是一张自然照片”;“这是一个自然的形象”;“这是大自然的杰作。”

3.输入格式

用图像-文本对对var -tiny的所有参数进行自回归训练。输入格式遵循流行的LVLMs,即图像token以前缀的形式与文本token打包。具体来说,作者使用两个特殊的标记“”和“”来指示图像标记作为插值OPT-125M(4096个标记)的输入的位置。在训练过程中,Vary-tiny的输出仅为文本,并将“”视为eos令牌。

三、扩大视觉词汇

1.Vary-base结构

在完成词汇网络的训练后,作者将其引入到LVLM - Var -base中。具体来说,作者将新的视觉词汇表与原始的CLIP-VIT并行化。这两个视觉词汇表都有一个单独的输入嵌入层,即一个简单的线性。如图2所示,线性的输入通道为1024,输出通道为2048,保证了拼接后的图像token通道为4096,这与LLM (Qwen-7B或Vicuna-7B)的输入完全一致。

2.扩展短语中的数据引擎

LATEX渲染文档 作者认为需要数据具有一定的格式,例如支持公式和表格。为此,作者通过LATEX呈现创建文档数据。首先,在arxiv上收集了一些.tex源文件,然后使用正则表达式提取表、数学公式和纯文本。最后,重新渲染这些内容与用pdflatex准备的新模板。作者收集了10多个模板来执行批处理呈现。此外,将每个文档页面的文本ground truth转换为mathpix markdown样式,以统一格式。通过这个建设过程,作者获得了50万英文页面和40万中文页面。图4显示了一些示例。

在这里插入图片描述

使用pdflatex来渲染文档,使用pyecharts/matplotlib来渲染图表。文档数据获取中/英文文本、公式和表格。图表数据包括中/英文条形、线形、饼形和复合样式。

语义关联图呈现 在1.2.2节中,作者批量渲染图表数据来训练新的词汇网络。然而,这些呈现图表中的文本(标题、x轴值和y轴值)相关性较低,因为它们是随机生成的。这个问题在词汇表生成过程中不是问题,作者只希望新的词汇表能够有效地压缩视觉信息。但是在Vary-base的训练阶段,由于LLM的解冻,希望使用更高质量(强相关内容)的数据进行训练。因此,作者使用GPT-4使用相关语料库生成一些图表,然后利用高质量语料库添加渲染200k图表数据进行Vary-base训练。一般数据 训练Vary-base的过程遵循流行的LVLMs,例如LLaVA,包括预训练和SFT阶段。与LLaVA不同的是,作者冻结了所有的词汇网络,并解冻了输入嵌入层和LLM,这更像是一个纯LLM的预训练设置。作者使用自然的图像-文本对数据向vary库引入一般概念。图像-文本对从LAION-COCO中随机抽取,数量为400万。在SFT阶段,使用LLaVA-80k或LLaVA-CC665k以及DocVQA和ChartQA的训练集作为微调数据集。

实验结果

在这里插入图片描述

如表2所示,在llva -80k SFT数据上,Vary-base(以Qwen-7B为LLM)在DocVQA上可以实现78.2% (test)和76.3% (val)的ANLS。使用LLaVA-665k的SFT数据,Vary-base在ChartQA上的平均性能可以达到66.1%。在这两个具有挑战性的下游任务上的表现与Qwen-VL相当甚至更好,这表明所提出的视觉词汇量放大方法在下游也很有前景。
在这里插入图片描述

使用相同的LLM (Vicuna-7B)和SFT数据(LLaVA-CC665k), Vary比LLaVA-1.5提高了2.4%(32.9%对30.5%)的总度量,证明Vary的数据和训练策略不会损害模型的一般能力。此外,Vary与Qwen-7B和LLaVA-80k的性能可以达到36.2%,进一步证明了Vary的视觉词汇缩放方式的有效性这一次,只需一句话命令,多模态大模型Vary直接端到端输出结果。Vary表现出了很大的潜力和极高的上限,OCR可以不再需要冗长的pipline,直接端到端输出,且可以按用户的prompt输出不同的格式如latex 、word 、markdown。

在这里插入图片描述

这篇关于多模态大模型Vary:扩充视觉Vocabulary,实现更细粒度的视觉感知的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/567564

相关文章

Java实现检查多个时间段是否有重合

《Java实现检查多个时间段是否有重合》这篇文章主要为大家详细介绍了如何使用Java实现检查多个时间段是否有重合,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录流程概述步骤详解China编程步骤1:定义时间段类步骤2:添加时间段步骤3:检查时间段是否有重合步骤4:输出结果示例代码结语作

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Java覆盖第三方jar包中的某一个类的实现方法

《Java覆盖第三方jar包中的某一个类的实现方法》在我们日常的开发中,经常需要使用第三方的jar包,有时候我们会发现第三方的jar包中的某一个类有问题,或者我们需要定制化修改其中的逻辑,那么应该如何... 目录一、需求描述二、示例描述三、操作步骤四、验证结果五、实现原理一、需求描述需求描述如下:需要在

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

前端原生js实现拖拽排课效果实例

《前端原生js实现拖拽排课效果实例》:本文主要介绍如何实现一个简单的课程表拖拽功能,通过HTML、CSS和JavaScript的配合,我们实现了课程项的拖拽、放置和显示功能,文中通过实例代码介绍的... 目录1. 效果展示2. 效果分析2.1 关键点2.2 实现方法3. 代码实现3.1 html部分3.2