【正点原子STM32连载】 第二十三章 高级定时器互补输出带死区控制实验 摘自【正点原子】APM32E103最小系统板使用指南

本文主要是介绍【正点原子STM32连载】 第二十三章 高级定时器互补输出带死区控制实验 摘自【正点原子】APM32E103最小系统板使用指南,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1)实验平台:正点原子APM32E103最小系统板
2)平台购买地址:https://detail.tmall.com/item.htm?id=609294757420
3)全套实验源码+手册+视频下载地址: http://www.openedv.com/docs/boards/xiaoxitongban

第二十三章 高级定时器互补输出带死区控制实验

本章将介绍使用APM32E103输出带死区和刹车控制的两路互补PWM。通过本章的学习,读者将学习到高级定时器的互补输出、死区插入和刹车的功能的使用。
本章分为如下几个小节:
23.1 硬件设计
23.2 程序设计
23.3下载验证

23.1 硬件设计
23.1.1 例程功能

  1. 定时器1通道1及其互补通道输出频率为1KHz,占空比为30%的PWM,且带死区控制
  2. 当定时器1的刹车输入引脚被拉高时,产生刹车时间,即定时器1停止输出PWM
  3. LED0闪烁,指示程序正在运行
    23.1.2 硬件资源
  4. LED
    LED0 - PB5
  5. 定时器1
    通道1正常输出通道 - PE9
    通道1互补输出通道 - PE8
    刹车输入 - PE15
    23.1.3 原理图
    本章实验使用的定时器1为APM32E103的片上资源,因此没有对应的连接原理图。
    23.2 程序设计
    23.2.1 Geehy标准库的TMR驱动
    本章实验将使用TMR1的通道1和通道1的互补通道输出两路带死区的互补PWM,同时还使用到了刹车功能,其具体的配置步骤如下:
    ①:配置TMR1的自动重装载值和预分频器数值等参数
    ②:配置输出比较通道1及其互补通道
    ③:配置刹车和死区
    ④:使能TMR1
    ⑤:使能TMR1的PWM输出
    ⑥:使能输出比较通道1输出
    ⑦:使能输出比较通道1互补通道输出
    ⑧:配置互补PWM的死区时间
    在Geehy标准库中对应的驱动函数如下:
    ①:配置TMR
    请见第16.2.1小节中配置TMR的相关内容。
    ②:配置输出比较通道
    请见第18.2.1小节中配置输出比较通道的相关内容。
    ③:配置刹车和死区
    该函数用于配置刹车和死区,其函数原型如下所示:
    void TMR_ConfigBDT(TMR_T* tmr, TMR_BDTConfig_T* BDTConfig);
    该函数的形参描述,如下表所示:
    在这里插入图片描述

表23.2.1.1 函数TMR_ConfigBDT()形参描述
该函数的返回值描述,如下表所示:
返回值 描述
无 无
表23.2.1.2 函数TMR_ConfigBDT()返回值描述
该函数使用TMR_BDTConfig_T类型的结构体变量传入TMR刹车和死区的配置参数,该结构体的定义如下所示:

typedef enum
{TMR_RMOS_STATE_DISABLE,			/* 禁止输出 */TMR_RMOS_STATE_ENABLE			/* 输出无效电平 */
} TMR_RMOS_STATE_T;typedef enum
{TMR_IMOS_STATE_DISABLE,			/* 禁止输出 */TMR_IMOS_STATE_ENABLE			/* 死区期间输出无效电平,否则输出空闲电平 */
} TMR_IMOS_STATE_T;typedef enum
{TMR_LOCK_LEVEL_OFF,				/* 无锁定写保护 */TMR_LOCK_LEVEL_1,				/* 锁定写保护级别1 */TMR_LOCK_LEVEL_2,				/* 锁定写保护级别2 */TMR_LOCK_LEVEL_3				/* 锁定写保护级别3 */
} TMR_LOCK_LEVEL_T;typedef enum
{TMR_BRK_STATE_DISABLE,			/* 禁用刹车功能 */TMR_BRK_STATE_ENABLE			/* 使能刹车功能 */
} TMR_BRK_STATE_T;typedef enum
{TMR_BRK_POLARITY_LOW,			/* 刹车输入低电平有效 */TMR_BRK_POLARITY_HIGH			/* 刹车输入高电平有效 */
} TMR_BRK_POLARITY_T;typedef enum
{TMR_AUTOMATIC_OUTPUT_DISABLE,	/* 禁用自动输出 */TMR_AUTOMATIC_OUTPUT_ENABLE		/* 使能自动输出 */
} TMR_AUTOMATIC_OUTPUT_T;typedef struct
{TMR_RMOS_STATE_T	RMOS;	    /* 运行模式下的关闭状态 */TMR_IMOS_STATE_T	IMOS;	    /* 空闲模式下的关闭状态 */TMR_LOCK_LEVEL_T	lockLevel;	/* 锁定写保护模式 */uint16_t			deadTime;	/* 互补输出通道的死区持续时间 */TMR_BRK_STATE_T			BRKState;			/* 使能刹车功能 */TMR_BRK_POLARITY_T		BRKPolarity;		/* 刹车输入极性 */TMR_AUTOMATIC_OUTPUT_T	automaticOutput;	/* 使能自动输出 */
} TMR_BDTConfig_T;
该函数的使用示例,如下所示:
#include "apm32e10x.h"
#include "apm32e10x_tmr.h"void example_fun(void)
{TMR_BDTConfig_T tmr_bdt_init_struct;/* 配置TMR1的刹车和死区 */tmr_bdt_init_struct.RMOS			 = TMR_RMOS_STATE_DISABLE;tmr_bdt_init_struct.IMOS			 = TMR_IMOS_STATE_DISABLE;tmr_bdt_init_struct.lockLevel		 = TMR_LOCK_LEVEL_OFF;tmr_bdt_init_struct.deadTime		 = 0;tmr_bdt_init_struct.BRKState		 = TMR_BRK_STATE_ENABLE;tmr_bdt_init_struct.BRKPolarity	 = TMR_BRK_POLARITY_HIGH;tmr_bdt_init_struct.automaticOutput = TMR_AUTOMATIC_OUTPUT_ENABLE;TMR_ConfigBDT(TMR1, &tmr_bdt_init_struct);
}

④:使能TMR
请见第16.2.1小节中使能TMR的相关内容。
⑤:使能高级定时器PWM输出
请见第21.2.1小节中使能高级定时器PWM输出的相关内容。
⑥:使能捕获比较通道
请见第18.2.1小节中使能捕获比较通道的相关内容。
⑦:使能捕获比较互补通道
该函数用于使能捕获不叫互补通道,其函数原型如下所示:
void TMR_EnableCCxChannel(TMR_T* tmr, TMR_CHANNEL_T channel);
该函数的形参描述,如下表所示:
形参 描述
tmr 指向TMR外设结构体的指针
例如:TMR1、TMR2等(在apm32e10x.h文件中有定义)
channel 指定使能的捕获比较互补通道
例如:TMR_CHANNEL_1、TMR_CHANNEL_2等(在apm32f4xx_tmr.h文件中有定义)
表23.2.1.3 函数TMR_EnableCCxChannel()形参描述
该函数的返回值描述,如下表所示:
返回值 描述
无 无
表23.2.1.4 函数TMR_EnableCCxChannel()返回值描述
该函数的使用示例,如下所示:

#include "apm32e10x.h"
#include "apm32e10x_tmr.h"void example_fun(void)
{/* 使能TMR1捕获比较通道1互补通道 */TMR_EnableCCxChannel(TMR1, TMR_CHANNEL_1);
}

⑧:配置死区时间
高级定时器的死区时间配置,可以通过函数TMR_ConfigBDT()进行配置,也可以通过写寄存器的方式直接修改高级定时器刹车和死区寄存器的DTS位,示例如下所示:

#include " apm32e10x.h"void example_fun(void)
{/* 配置TMR1的死区时间 */TMR1->BDT_B.DTS = 100;
}

23.2.2 高级定时器驱动
本章实验的高级定时器驱动主要负责向应用层提供高级定时器的初始化函数和PWM占空比、死区时间的配置函数。本章实验中,高级定时器驱动的驱动代码包括atmr.c和atmr.h两个文件。
高级定时器驱动中,对TMR、GPIO相关的宏定义,如下所示:
/* 高级定时器PWM输出引脚定义 */

#define ATMRX_TMRX_CPLM_CHY_GPIO_PORT           GPIOE
#define ATMRX_TMRX_CPLM_CHY_GPIO_PIN            GPIO_PIN_9
#define ATMRX_TMRX_CPLM_CHY_GPIO_CLK_ENABLE()   do{ RCM_EnableAPB2PeriphClock(RCM_APB2_PERIPH_GPIOE); }while(0)#define ATMRX_TMRX_CPLM_CHYN_GPIO_PORT          GPIOE
#define ATMRX_TMRX_CPLM_CHYN_GPIO_PIN           GPIO_PIN_8
#define ATMRX_TMRX_CPLM_CHYN_GPIO_CLK_ENABLE()  do{ RCM_EnableAPB2PeriphClock(RCM_APB2_PERIPH_GPIOE); }while(0)
#define ATMRX_TMRX_CPLM_CHYN_GPIO_REMAP()       do{                                                 \RCM_EnableAPB2PeriphClock(RCM_APB2_PERIPH_AFIO);    \GPIO_ConfigPinRemap(GPIO_FULL_REMAP_TMR1);          \}while(0) #define ATMRX_TMRX_CPLM_BKIN_GPIO_PORT          GPIOE
#define ATMRX_TMRX_CPLM_BKIN_GPIO_PIN           GPIO_PIN_15
#define ATMRX_TMRX_CPLM_BKIN_GPIO_CLK_ENABLE()  do{ RCM_EnableAPB2PeriphClock(RCM_APB2_PERIPH_GPIOE); }while(0)/* 高级定时器定义 */
#define ATMRX_TMRX_CPLM                         TMR1
#define ATMRX_TMRX_CPLM_CHY                     TMR_CHANNEL_1
#define ATMRX_TMRX_CPLM_CHY_CLK_ENABLE()        do{ RCM_EnableAPB2PeriphClock(RCM_APB2_PERIPH_TMR1); }while(0)
高级定时器驱动中TMR1的初始化函数,如下所示:
/*** @brief       初始化高级定时器互补输出* @note*              高级定时器的时钟来自APB2, 而PCLK2 = 120Mhz, 我们设置PPRE2不分频, 因此*              高级定时器时钟 = 120Mhz*              定时器溢出时间计算方法: Tout = ((arr + 1) * (psc + 1)) / Ft us.*              Ft=定时器工作频率,单位:Mhz** @param       arr: 自动重装值* @param       psc: 时钟预分频数* @retval      无*/
void atmr_tmrx_cplm_pwm_init(uint16_t arr, uint16_t psc)
{GPIO_Config_T gpio_init_struct;TMR_BaseConfig_T tmr_init_struct;TMR_OCConfig_T tmr_oc_init_struct;TMR_BDTConfig_T tmr_bdt_init_struct;ATMRX_TMRX_CPLM_CHY_CLK_ENABLE();          /* 高级定时器时钟使能 */ATMRX_TMRX_CPLM_CHY_GPIO_CLK_ENABLE();     /* 通道X对应IO口时钟使能 */ATMRX_TMRX_CPLM_CHYN_GPIO_CLK_ENABLE();    /* 通道X互补通道对应IO口时钟使能 */ATMRX_TMRX_CPLM_BKIN_GPIO_CLK_ENABLE();    /* 通道X刹车输入对应IO口时钟使能 */gpio_init_struct.pin = ATMRX_TMRX_CPLM_CHY_GPIO_PIN; /* 通道Y的GPIO口 */gpio_init_struct.mode = GPIO_MODE_AF_PP;             /* 推挽复用输出 */
gpio_init_struct.speed = GPIO_SPEED_50MHz;           /* 高速 */
/* 初始化GPIO */GPIO_Config(ATMRX_TMRX_CPLM_CHY_GPIO_PORT, &gpio_init_struct);gpio_init_struct.pin = ATMRX_TMRX_CPLM_CHYN_GPIO_PIN;/* 通道YN的GPIO口 */
/* 初始化GPIO */GPIO_Config(ATMRX_TMRX_CPLM_CHYN_GPIO_PORT, &gpio_init_struct);/* 设置为刹车输入引脚的GPIO口 */
gpio_init_struct.pin = ATMRX_TMRX_CPLM_BKIN_GPIO_PIN; 
/* 初始化GPIO */GPIO_Config(ATMRX_TMRX_CPLM_BKIN_GPIO_PORT, &gpio_init_struct);     ATMRX_TMRX_CPLM_CHYN_GPIO_REMAP();                     /* 映射定时器IO */tmr_init_struct.division = psc;                        /* 定时器分频 */tmr_init_struct.period = arr;                          /* 自动重装载值 */tmr_init_struct.countMode = TMR_COUNTER_MODE_UP;       /* 递增计数模式 */tmr_init_struct.clockDivision = TMR_CLOCK_DIV_1;       /* 配置预分频系数 */TMR_ConfigTimeBase(ATMRX_TMRX_CPLM, &tmr_init_struct); /* 初始化PWM */tmr_oc_init_struct.mode = TMR_OC_MODE_PWM1;            /* 模式选择PWM1 */tmr_oc_init_struct.outputState = TMR_OC_STATE_ENABLE;  /* 输出状态 */tmr_oc_init_struct.outputNState = TMR_OC_NSTATE_ENABLE;/* 互补输出状态 */tmr_oc_init_struct.polarity = TMR_OC_POLARITY_LOW;     /* 输出比较极性为低 */tmr_oc_init_struct.nPolarity = TMR_OC_NPOLARITY_LOW;   /* 输出比较N极性为低 */tmr_oc_init_struct.idleState = TMR_OC_IDLE_STATE_SET;  /* 当MOE=0,OCx=1 */tmr_oc_init_struct.nIdleState = TMR_OC_NIDLE_STATE_SET;/* 当MOE=0,OCxN=1 */if (ATMRX_TMRX_CPLM_CHY ==TMR_CHANNEL_1)               /* 配置高级定时器通道 */{TMR_ConfigOC1(ATMRX_TMRX_CPLM, &tmr_oc_init_struct);}else if(ATMRX_TMRX_CPLM_CHY == TMR_CHANNEL_2){TMR_ConfigOC2(ATMRX_TMRX_CPLM, &tmr_oc_init_struct);}else if(ATMRX_TMRX_CPLM_CHY == TMR_CHANNEL_3){TMR_ConfigOC3(ATMRX_TMRX_CPLM, &tmr_oc_init_struct);}else if(ATMRX_TMRX_CPLM_CHY == TMR_CHANNEL_4){TMR_ConfigOC4(ATMRX_TMRX_CPLM, &tmr_oc_init_struct);}/* 设置死区参数,开启死区中断 */tmr_bdt_init_struct.RMOS = TMR_RMOS_STATE_DISABLE;  /* 运行模式的关闭输出状态 */tmr_bdt_init_struct.IMOS = TMR_IMOS_STATE_DISABLE;  /* 空闲模式的关闭输出状态 */tmr_bdt_init_struct.lockLevel = TMR_LOCK_LEVEL_OFF; /* 不用寄存器锁功能 */tmr_bdt_init_struct.deadTime = 0;                   /* 配置死区时间 */
tmr_bdt_init_struct.BRKState = TMR_BRK_STATE_ENABLE;/* 使能刹车输入 */
/* 刹车输入有效信号极性为高 */
tmr_bdt_init_struct.BRKPolarity = TMR_BRK_POLARITY_HIGH;
/* 使能AOE位,允许刹车结束后自动恢复输出 */
tmr_bdt_init_struct.automaticOutput = TMR_AUTOMATIC_OUTPUT_ENABLE;
/* 配置:中断功能、死区时间、锁定级别、IMOS */TMR_ConfigBDT(ATMRX_TMRX_CPLM, &tmr_bdt_init_struct);TMR_EnableCCxChannel(ATMRX_TMRX_CPLM, TMR_CHANNEL_1);/* 使能捕获比较通道 */TMR_Enable(ATMRX_TMRX_CPLM);                         /* 使能高级定时器 */TMR_EnableAUTOReload(ATMRX_TMRX_CPLM);               /* 配置重装载寄存器 */TMR_EnablePWMOutputs(ATMRX_TMRX_CPLM);               /* MOE=1,使能主输出 */
}

从上面的代码中可以看出,初始化函数不仅配置了TMR1的输出比较通道1输出PWM外,还配置使能了TMR1输出比较通道1的互补通道输出互补的PWM,同时还配置了死区时间和使能刹车功功能。
高级定时器驱动中配置PWM占空比和死区时间的函数,如下所示:

/*** @brief       设置高级定时器输出比较值和死区时间* @param       ccr: 输出比较值* @param       dtg: 地区时间* @note        当dtg[7:5] = 0xx时,死区时间 = dtg[7:0] * tDTS*              当dtg[7:5] = 10x时,死区时间 = (64 + dtg[5:0]) * tDTS * 2*              当dtg[7:5] = 110时,死区时间 = (32 + dtg[4:0]) * tDTS * 8*              当dtg[7:5] = 111时,死区时间 = (32 + dtg[4:0]) * tDTS * 16*              tDTS = (2^TMRx_CTRL1[9:8]) / TMRxCLK*              TMRxCLK为定时器时钟频率*              TMRx_CTRL1[9:8]为定时器时钟分频系数* @retval      无*/
void atmr_tmrx_cplm_pwm_set(uint16_t ccr, uint8_t dtg)
{ATMRX_TMRX_CPLM->BDT_B.DTS = dtg;                         /* 配置死区时间 */if (ATMRX_TMRX_CPLM_CHY ==TMR_CHANNEL_1)                  /* 配置输出比较值 */{TMR_ConfigCompare1(ATMRX_TMRX_CPLM, ccr);}else if(ATMRX_TMRX_CPLM_CHY == TMR_CHANNEL_2){TMR_ConfigCompare2(ATMRX_TMRX_CPLM, ccr);}else if(ATMRX_TMRX_CPLM_CHY == TMR_CHANNEL_3){TMR_ConfigCompare3(ATMRX_TMRX_CPLM, ccr);}else if(ATMRX_TMRX_CPLM_CHY == TMR_CHANNEL_4){TMR_ConfigCompare4(ATMRX_TMRX_CPLM, ccr);}
}

从上面的代码中可以看出,该函数配置了TMR1的死区时间和输出比较值,因为配置PWM的占空比就是配置对应通道的输出比较值。
23.2.3 实验应用代码
本实验的应用代码,如下所示:

int main(void)
{uint8_t t = 0;NVIC_ConfigPriorityGroup(NVIC_PRIORITY_GROUP_4);  /* 设置中断优先级分组为组4 */sys_apm32_clock_init(15);                         /* 配置系统时钟 */delay_init(120);                                  /* 初始化延时功能 */usart_init(115200);                               /* 初始化串口 */led_init();                                       /* 初始化LED */
atmr_tmrx_cplm_pwm_init(1000 - 1, 120 - 1);       /* 初始化通用定时器通道捕获 *//* 高级定时器设置输出比较值和死区时间 */atmr_tmrx_cplm_pwm_set(300, 100);while (1){delay_ms(10);t++;if (t >= 20){/* LED0(RED)闪烁 */LED0_TOGGLE();t = 0;}}
}

从上面的代码中可以看到,TMR1的自动重装载值配置为(1000-1),TMR1的预分频器数值配置为(120-1),并且TMR1的时钟频率为120MHz,因此TMR1的计数频率为1MHz,且TMR1每计数1000次溢出一次,因此溢出频率为1KHz,因此TMR1通道1及其互补通道输出两路互补PWM的频率也应该为1KHz。
随后配置了TMR1通道1的比较值为(300),与自动重装载值的比值为30%,因此输出PWM的占空比也应该为30%,同时配置了死区时间为100,因为TMR1的时钟频率为120MHz,因此死区时间在配置为100的情况下,对应的具体时间为(100*1/120MHz)ns≈833ns。
23.3 下载验证
在完成编译和烧录操作后,可以通过示波器观察PE8引脚和PE9引脚输出的两路PWM,可以发现,这两路PWM为互补PWM,且频率为1KHz、占空比为30%、死区时间大约为833ns。应为是能了刹车和自动输出功能,因此将PE15引脚接入有效的高电平后,可以看到两路PWM都被禁止输出了,撤销PE15引脚接入的高电平后,可以看到两路PWM有自动恢复输出了。

这篇关于【正点原子STM32连载】 第二十三章 高级定时器互补输出带死区控制实验 摘自【正点原子】APM32E103最小系统板使用指南的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/564661

相关文章

Spring Security 基于表达式的权限控制

前言 spring security 3.0已经可以使用spring el表达式来控制授权,允许在表达式中使用复杂的布尔逻辑来控制访问的权限。 常见的表达式 Spring Security可用表达式对象的基类是SecurityExpressionRoot。 表达式描述hasRole([role])用户拥有制定的角色时返回true (Spring security默认会带有ROLE_前缀),去

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟 开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚 第一站:海量资源,应有尽有 走进“智听

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n

poj 1287 Networking(prim or kruscal最小生成树)

题意给你点与点间距离,求最小生成树。 注意点是,两点之间可能有不同的路,输入的时候选择最小的,和之前有道最短路WA的题目类似。 prim代码: #include<stdio.h>const int MaxN = 51;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int P;int prim(){bool vis[MaxN];

poj 2349 Arctic Network uva 10369(prim or kruscal最小生成树)

题目很麻烦,因为不熟悉最小生成树的算法调试了好久。 感觉网上的题目解释都没说得很清楚,不适合新手。自己写一个。 题意:给你点的坐标,然后两点间可以有两种方式来通信:第一种是卫星通信,第二种是无线电通信。 卫星通信:任何两个有卫星频道的点间都可以直接建立连接,与点间的距离无关; 无线电通信:两个点之间的距离不能超过D,无线电收发器的功率越大,D越大,越昂贵。 计算无线电收发器D

【区块链 + 人才服务】可信教育区块链治理系统 | FISCO BCOS应用案例

伴随着区块链技术的不断完善,其在教育信息化中的应用也在持续发展。利用区块链数据共识、不可篡改的特性, 将与教育相关的数据要素在区块链上进行存证确权,在确保数据可信的前提下,促进教育的公平、透明、开放,为教育教学质量提升赋能,实现教育数据的安全共享、高等教育体系的智慧治理。 可信教育区块链治理系统的顶层治理架构由教育部、高校、企业、学生等多方角色共同参与建设、维护,支撑教育资源共享、教学质量评估、