DOA估计算法——迭代自适应算法(IAA)

2023-12-30 13:36
文章标签 算法 估计 迭代 适应 doa iaa

本文主要是介绍DOA估计算法——迭代自适应算法(IAA),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1 简介

        迭代自适应法 (Iterative Adaptive Approach,IAA)估计算法最早由美国的电气工程师和数学家Robert Schmidt和Roy A. Kuc在1986年的一篇论文"Multiple Emitter Location and Signal Parameter Estimation"中首次提出了这一算法, IAA DOA 估计算法是一种用于无线通信和雷达系统中估计信号到达方向的方法,对于信号处理和通信领域具有重要意义。

       对于实际的雷达DOA估计来说,传统的延时相加方法(Delay-And-Sum, DAS)分辨率低,旁瓣干扰大。而ESPRIT2I和MUSIC等方法只有在传感器数大于源信号数,并且需要大量的快拍数,和高信噪比的情况下来获得高分辨率,但是在实际的工程应用中,收集大量的快拍是不切实际的,尤其是在快速的时变环境很难做到这一点,使得定位性能恶化。此外,由于对子空间正交性比较敏感,基于子空间的方法也不能处理相干源问题。

       IAA是一种依赖数据,基于加权最小二乘方法(WLS)的非参数的迭代自适应算法,它可以在少量快拍(甚至是一个)、相干或非相千源、任意阵列的情况下得到很好的参数估计,相比于其他依赖于数据的方法,IAA可以大大地增加分辨率并且减小旁瓣,所以它的性能要比现有的空间稀疏信号重构算法好。

        阵列信号经常遇到的问题是少量的快拍数和低信噪比。针对这个问题应用IAA算法就可以很好地减小这些不利因素对信号估计的影响。由于实际信号往往要比观测信号少得多,所以,将阵列信号处理问题转换到稀疏信号表示领域。因为稀疏信号表示方法可以处理少量快拍数的情况,甚至是一个。而这种基于稀疏表示的方法也被用在频谱估计、图像处理、阵列设计和其他很多领域。

2 IAA算法原理 

        假设远场有K个窄带信号入射到有M个天线阵元的均匀阵列上,第k个信号的入射角度为。n时刻阵列接受的数据矢量可以表示为

式中N是快拍数量。M×K的阵列流行矩阵,,n=1,2,…,N,是信号矩阵,e(n)表示加性噪声矩阵。A(θ)对于不同的阵列结构略有不同,对于均匀阵列第k个源一致的方向矢量可以表示为: 

式中表示阵元间距,λ表示传播信号的波长。均匀线阵的结构如图1所示

图1 均匀线阵结构

设P是一个K×K的对角矩阵,对角元素是扫描网格上每一个角度的信号能量,干扰和噪声的协方差矩阵为 

其中,左式表示信号的协方差矩阵,右式表示协方差矩阵的特征分解形式。因此式(3)可以理解为出去有用信号剩余的量即为干扰和噪声。对于信号的协方差估计,通常可通过下式进行估计

IAA算法通过求解如下加权最小二乘代价函数:

式中表示第n次快拍θk处信号的复幅值。要精确得到估计结果,既要使得: 

达到最小,此时的成为最小二乘加权量,W即为加权矩阵。当W=I时,为非加权最小二乘估计。将式(6)对求偏导数,并令偏导数等于零,则得最小二乘的估计量 

则估计的均方误差为:

其中是已知的,当时,可以证明加权最小二乘法估计的均方误差是所有加权矩阵下最小的。这时可获得最佳加权最小二乘估计量为: 

最终根据矩阵求逆定理可得:

最终,综上所述,IAA算法总结为:

Step1:初始化 

Step2:划分包含K个目标的离散网格

Step3:迭代

(1)计算 

(2)计算协方差矩阵

  (3)   更新

(4)判断收敛,不收敛则回到(2),否则结束迭代。

3 IAA仿真 

        仿真环境:Matalb2021b,Windows11

        阵元数量:M=16

        目标来波方向:40°,10°,20°的非相干信号源

        信号的中心频率为:f = 77GHz,信号能量幅度默认为1。

        信噪比:SNR=5dB、16dB、30dB

        收敛误差:小于

        快拍数:N = 1

        仿真结果:

根据上述仿真结果,我们可以得出,随着信噪比的增大,要到达量级的误差,迭代次数显著减少,同时估计的精度也显著提高,目标旁瓣也显著降低。 

4 结束语 

        本期内容分析仿真了一种基于最小加权二乘法的IAA算法,通过选取合理的加权系数,更新协方差矩阵进行迭代计算,在低信噪比、单个快拍密集谱的情况下得到了非常精确的DOA和信号能量估计。阵列信号经常遇到的问题是少量的快拍数和低信噪比。针对这个问题应用IAA算法就可以很好地减小这些不利因素对信号估计的影响。此外希望本期内容对你有所帮助,另外创作不易,感谢支持。

5 参考资料 

       (eWiley) Optimum Array Processing. Harry L. Van Trees

       基于迭代自适应方法的空间信号估计.

这篇关于DOA估计算法——迭代自适应算法(IAA)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/552999

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

dp算法练习题【8】

不同二叉搜索树 96. 不同的二叉搜索树 给你一个整数 n ,求恰由 n 个节点组成且节点值从 1 到 n 互不相同的 二叉搜索树 有多少种?返回满足题意的二叉搜索树的种数。 示例 1: 输入:n = 3输出:5 示例 2: 输入:n = 1输出:1 class Solution {public int numTrees(int n) {int[] dp = new int

Codeforces Round #240 (Div. 2) E分治算法探究1

Codeforces Round #240 (Div. 2) E  http://codeforces.com/contest/415/problem/E 2^n个数,每次操作将其分成2^q份,对于每一份内部的数进行翻转(逆序),每次操作完后输出操作后新序列的逆序对数。 图一:  划分子问题。 图二: 分而治之,=>  合并 。 图三: 回溯:

最大公因数:欧几里得算法

简述         求两个数字 m和n 的最大公因数,假设r是m%n的余数,只要n不等于0,就一直执行 m=n,n=r 举例 以18和12为例 m n r18 % 12 = 612 % 6 = 06 0所以最大公因数为:6 代码实现 #include<iostream>using namespace std;/