V-rep(CoppeliaSim)添加相机,与python联合仿真,并使用python读取V-rep中的RGB图与深度图

本文主要是介绍V-rep(CoppeliaSim)添加相机,与python联合仿真,并使用python读取V-rep中的RGB图与深度图,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 前言
  • 在V-rep中构建场景
  • 建立python与V-rep通信

前言

本文主要介绍了如何使用python与V-rep联合仿真,并用OpenCV可视化V-rep中视觉传感器所能看到的 RGB图深度图,效果图如下。
在这里插入图片描述

在V-rep中构建场景

本文使用的V-rep版本是3.5:

  1. 打开V-rep,并将任意一个目标(如机械臂)拖入到场景中。
  2. 添加视觉传感器,在场景的空白处点击右键–>Add–>Vision Sensor–> Perspective projection,并将相机旋转合适的角度,使其能够看到机械臂,此时视觉传感器的名称为Vision_sensor
    在这里插入图片描述
  3. 点击最右侧竖直工具栏图标按钮的脚本配置按钮,点击右上角Insert new script按钮,点击Child script(non-threaded)按钮创建脚本。点击Scripts中的Associated object,在下拉菜单中选择Vision_sensor,将脚本与相机关联。
    在这里插入图片描述
    在这里插入图片描述
  4. 双击场景层次结构菜单栏中Vision_sensor的图标,注意不要点击文字。在弹窗中设计图像分辨率大小,如512*512(一定要是2的幂次方)。
    在这里插入图片描述
    在这里插入图片描述
  5. 点击Vision_sensor后面的书签按钮,弹出Lua脚本,添加simRemoteApi.start(19997),此处的19997为端口号。
    在这里插入图片描述
    在这里插入图片描述

建立python与V-rep通信

  1. sim.py , simConst.py , remoteApi.dll(Windows),或 remoteApi.dylib(Mac os)remoteApi.so(Linux) 复制到python项目文件夹中。

其中,sim.py , simConst.py在vrep的安装目录中,具体在“programming/remoteApiBindings/python”下。 **remoteApi.dll(Windows)**在“programming/remoteApiBindings/lib/lib/Windows”下。

  1. python与vrep通信
① 调用import sim加载库;
② 利用sim.simxStart()建立客户端;
③ 调用以"simx"为前缀的vrep远程API函数;
④ 停止仿真:sim.simxFinish(). 
  1. 下面是以上面场景为例,写的python脚本,该脚本实现了与vrep的通信,并用OpenCV将vrep相机数据的RGB图和depth图进行了可视化显示:
import sim
import time
import sys
import cv2
import numpy as np#关闭之前的连接
sim.simxFinish(-1)# 获得客户端ID
clientID = sim.simxStart('127.0.0.1',19997,True,True,5000,5)
print("Connection success!!!")if clientID != -1:print('Connected to remote API server')
else:print('Connection not successful')sys.exit('Could not connect')# 启动仿真
sim.simxStartSimulation(clientID,sim.simx_opmode_blocking)
print("Simulation start")# 使能同步模式
sim.simxSynchronous(clientID,True)# 获得对象的句柄
ret, targetObj = sim.simxGetObjectHandle(clientID,'target',sim.simx_opmode_blocking)
errorCode,visionSensorHandle = sim.simxGetObjectHandle(clientID,'Vision_sensor',sim.simx_opmode_oneshot_wait)
errprCode,resolution,rawimage = sim.simxGetVisionSensorImage(clientID,visionSensorHandle,0,sim.simx_opmode_streaming)def readVisionSensor():global resolutionerrprCode, resolution, rawimage = sim.simxGetVisionSensorImage(clientID, visionSensorHandle, 0, sim.simx_opmode_buffer)sensorImage = []sensorImage = np.array(rawimage, dtype=np.uint8)    #transform the raw image to uint8sensorImage.resize([resolution[1], resolution[0], 3])        # Process the image to the format (256,128,3)cv2.flip(sensorImage, 0, sensorImage)  # image upside downimage = sensorImage# print("image.shape: ", image.shape)return imagedef readDepthSensor():global resolution# 获取 Depth Infosim_ret, resolution, depth_buffer = sim.simxGetVisionSensorDepthBuffer(clientID, visionSensorHandle, sim.simx_opmode_blocking)depth_img = np.asarray(depth_buffer)depth_img.shape = (resolution[1], resolution[0])zNear = 0.01zFar = 2depth_img = depth_img * (zFar - zNear) + zNeardepth_img = cv2.flip(depth_img, 0)return depth_imgwhile True:# 获得对象的位置,并输出ret, arr = sim.simxGetObjectPosition(clientID,targetObj,-1,sim.simx_opmode_blocking)image = readVisionSensor()depth = readDepthSensor()print(depth)cv2.imshow("image", image)cv2.imshow("depth", depth)cv2.waitKey(1)saveFile = ".\image.jpg"  # 保存文件的路径cv2.imwrite(saveFile, depth)  # 保存图像文件if ret == sim.simx_return_ok:print(arr)# time.sleep(2)# 退出
sim.simxFinish(clientID)
print('Program end')
  1. 先运行vrep仿真,再运行python脚本,即可进行显示。
    在这里插入图片描述

这篇关于V-rep(CoppeliaSim)添加相机,与python联合仿真,并使用python读取V-rep中的RGB图与深度图的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/548818

相关文章

springboot security快速使用示例详解

《springbootsecurity快速使用示例详解》:本文主要介绍springbootsecurity快速使用示例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝... 目录创www.chinasem.cn建spring boot项目生成脚手架配置依赖接口示例代码项目结构启用s

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python+PyQt5实现多屏幕协同播放功能

《Python+PyQt5实现多屏幕协同播放功能》在现代会议展示、数字广告、展览展示等场景中,多屏幕协同播放已成为刚需,下面我们就来看看如何利用Python和PyQt5开发一套功能强大的跨屏播控系统吧... 目录一、项目概述:突破传统播放限制二、核心技术解析2.1 多屏管理机制2.2 播放引擎设计2.3 专

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

java中使用POI生成Excel并导出过程

《java中使用POI生成Excel并导出过程》:本文主要介绍java中使用POI生成Excel并导出过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录需求说明及实现方式需求完成通用代码版本1版本2结果展示type参数为atype参数为b总结注:本文章中代码均为

Spring Boot3虚拟线程的使用步骤详解

《SpringBoot3虚拟线程的使用步骤详解》虚拟线程是Java19中引入的一个新特性,旨在通过简化线程管理来提升应用程序的并发性能,:本文主要介绍SpringBoot3虚拟线程的使用步骤,... 目录问题根源分析解决方案验证验证实验实验1:未启用keep-alive实验2:启用keep-alive扩展建

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1