伯努利分布期望,方差推导

2023-12-28 02:58

本文主要是介绍伯努利分布期望,方差推导,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

伯努利分布的期望,方差推导比较简单
首先要知道伯努利分布的概率质量函数:

p(x)={p,1p,if x=1if x=0
期望推导:

这篇关于伯努利分布期望,方差推导的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/544924

相关文章

uva 10014 Simple calculations(数学推导)

直接按照题意来推导最后的结果就行了。 开始的时候只做到了第一个推导,第二次没有继续下去。 代码: #include<stdio.h>int main(){int T, n, i;double a, aa, sum, temp, ans;scanf("%d", &T);while(T--){scanf("%d", &n);scanf("%lf", &first);scanf

全英文地图/天地图和谷歌瓦片地图杂交/设备分布和轨迹回放/无需翻墙离线使用

一、前言说明 随着风云局势的剧烈变化,对我们搞软件开发的人员来说,影响也是越发明显,比如之前对美对欧的软件居多,现在慢慢的变成了对大鹅和中东以及非洲的居多,这两年明显问有没有俄语或者阿拉伯语的输入法的增多,这要是放在2019年以前,一年也遇不到一个人问这种需求场景的。 地图应用这块也是,之前的应用主要在国内,现在慢慢的多了一些外国的应用场景,这就遇到一个大问题,我们平时主要开发用的都是国内的地

【无线通信发展史⑧】测量地球质量?重力加速度g的测量?如何推导单摆周期公式?地球半径R是怎么测量出来的?

前言:用这几个问答形式来解读下我这个系列的来龙去脉。如果大家觉得本篇文章不水的话希望帮忙点赞收藏加关注,你们的鼓舞是我继续更新的动力。 我为什么会写这个系列呢? 首先肯定是因为我本身就是一名从业通信者,想着更加了解自己专业的知识,所以更想着从头开始了解通信的来源以及在每一个时代的发展进程。 为什么会从头开始写通信? 我最早是学习了中华上下五千年,应该说朝代史,这个算个人兴趣,从夏

CF #278 (Div. 2) B.(暴力枚举+推导公式+数学构造)

B. Candy Boxes time limit per test 1 second memory limit per test 256 megabytes input standard input output standard output 题目链接: http://codeforces.com/contest/488/problem/B There

HDU2524(规律推导)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2524 解题思路: 暴力推出矩阵,以n = 2 , m = 4为例: 1 3  6  10 3 9 18 30 可以发现第一行和第一列都是有规律的,彼此相差2、3、4·····,其他元素为相应行第一个元素乘以第一列元素的积。预处理之后,我们O(1)就可以输出g[n][m]的值。 另外,

Ural1209(数学推导)

题目链接:点击打开链接 解题思路: 此题甚好。推导公式,首先观察序列110100100010000·····,我们把为1的下标单独拿出来看。依次为1、2、4 、7、 11·····,可以分解为1+(0) 、1+(0+1)、1+(0+1+2)、1+(0+1+2+3)、1+(0+1+2+3+4),可以推导出规律1 + x * (x - 1) / 2。 那么对于每个n,我们只要判断是否存在x

Python中如何实现列表推导式(List Comprehension)

Python中的列表推导式(List Comprehension)是一种简洁且高效的方式来创建列表。它不仅让代码更加简洁,而且通常比使用循环和条件语句生成列表更快。列表推导式的基本形式允许你从现有的列表或其他可迭代对象中创建新的列表,同时应用过滤和转换操作。下面我将详细解释列表推导式的概念、基本语法、高级用法以及其在实际应用中的优势。 一、列表推导式的基本概念 列表推导式是Python中的一种

对极约束及其性质 —— 公式详细推导

Title: 对极约束及其性质 —— 公式详细推导 文章目录 前言1. 对极约束 (Epipolar Constraint)2. 坐标转换 (Coordinate Transformations)3. 像素坐标 (Pixel Coordinates)4. 像素坐标转换 (Transformations of Pixel Coordinates)5. 本质矩阵 (Essential Matr

【深度学习 误差计算】10分钟了解下均方差和交叉熵损失函数

常见的误差计算函数有均方差、交叉熵、KL 散度、Hinge Loss 函数等,其中均方差函数和交叉熵函数在深度学习中比较常见,均方差主要用于回归问题,交叉熵主要用于分类问题。下面我们来深刻理解下这两个概念。 1、均方差MSE。 预测值与真实值之差的平方和,再除以样本量。 均方差广泛应用在回归问题中,在分类问题中也可以应用均方差误差。 2、交叉熵 再介绍交叉熵损失函数之前,我们首先来介绍信息

【Python基础】Python推导式

本文收录于 《Python编程入门》专栏,从零基础开始,分享一些Python编程基础知识,欢迎关注,谢谢! 文章目录 一、前言二、列表推导式三、元组推导式(生成器表达式)四、字典推导式五、集合推导式六、总结 一、前言 Python推导式(Comprehensions)是Python语言中一种独特且强大的语法特性,用于从已有的可迭代对象(如列表、元组、字典、集合)快速创建