LLM大语言模型(三):使用ChatGLM3-6B的函数调用功能前先学会Python的装饰器

本文主要是介绍LLM大语言模型(三):使用ChatGLM3-6B的函数调用功能前先学会Python的装饰器,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

ChatGLM3-6B的函数调用模式示例

本地启动ChatGLM3-6B工具模式

如何在ChatGLM3-6B里新增一个自定义函数呢?

get_weather基于Python的装饰器实现

函数注解@register_tool

现在我们来自定义一个kuakuawo()函数


ChatGLM3-6B的函数调用模式示例

ChatGLM3-6B目前有三种使用模式:

  1. 对话模式
  2. 工具模式(也就是本文要介绍的函数调用)
  3. 代码解释器模式

函数调用模式示例:

函数调用模式介绍:

  • 首先进入Tool工具模式
  • 询问“北京今天的天气”
  • 大模型自动识别出,要调用get_weather工具(函数),且参数是“北京”
  • 大模型接着调用get_weather,入参=北京,获取到函数执行的结果
  • <|Observation|>展示的是函数的执行结果
  • 紧接着大模型根据上述内容,继续生成回答“根据APIxxxxxxxxxxxx”

本地启动ChatGLM3-6B工具模式

进入conda对应的环境

conda activate chatglm

进入composite_demo目录

cd composite_demo

修改为使用本地模型,参考LLM大语言模型(一):ChatGLM3-6B本地部署-CSDN博客

# 修改client.py
MODEL_PATH = os.environ.get('MODEL_PATH', '====你的本地模型的绝对路径====')

启动模型

# 在composite_demo目录下
streamlit run main.py

然后在页面选择Tool模式即可。

如何在ChatGLM3-6B里新增一个自定义函数呢?

首先我们看下get_weather函数是如何实现的。

在composite_demo目录下有个tool_registry.py文件,里面包含两个已经定义好的函数:

  • random_number_generator

  • get_weather

其中get_weather就是上文对话中用到的函数。

get_weather基于Python的装饰器实现

@register_tool
def get_weather(city_name: Annotated[str, 'The name of the city to be queried', True],
) -> str:"""Get the current weather for `city_name`"""if not isinstance(city_name, str):raise TypeError("City name must be a string")key_selection = {"current_condition": ["temp_C", "FeelsLikeC", "humidity", "weatherDesc",  "observation_time"],}import requeststry:resp = requests.get(f"https://wttr.in/{city_name}?format=j1")resp.raise_for_status()resp = resp.json()ret = {k: {_v: resp[k][0][_v] for _v in v} for k, v in key_selection.items()}except:import tracebackret = "Error encountered while fetching weather data!\n" + traceback.format_exc() return str(ret)

get_weather功能很简洁,最终是从

https://wttr.in/{city_name}?format=j1

获取天气信息(https://wttr.in/%E5%8C%97%E4%BA%AC?format=j1)

函数注解@register_tool

register_tool的功能是将自定义的函数,转化为大模型需要的格式。 

def register_tool(func: callable):tool_name = func.__name__tool_description = inspect.getdoc(func).strip()python_params = inspect.signature(func).parameterstool_params = []# 解析param的Annotationfor name, param in python_params.items():annotation = param.annotationif annotation is inspect.Parameter.empty:raise TypeError(f"Parameter `{name}` missing type annotation")if get_origin(annotation) != Annotated:raise TypeError(f"Annotation type for `{name}` must be typing.Annotated")typ, (description, required) = annotation.__origin__, annotation.__metadata__typ: str = str(typ) if isinstance(typ, GenericAlias) else typ.__name__if not isinstance(description, str):raise TypeError(f"Description for `{name}` must be a string")if not isinstance(required, bool):raise TypeError(f"Required for `{name}` must be a bool")tool_params.append({"name": name,"description": description,"type": typ,"required": required})tool_def = {"name": tool_name,"description": tool_description,"params": tool_params}print("[registered tool] " + pformat(tool_def))_TOOL_HOOKS[tool_name] = func_TOOL_DESCRIPTIONS[tool_name] = tool_defreturn func

register_tool函数实现了装饰器,它将自定义的函数转换为tool_def dict,其中自动生成了name,description,params等信息

{'name': 'get_weather', 'description': 'Get the current weather for `city_name`', 'params': [{'name': 'city_name', 'description': 'The name of the city to be queried', 'type': 'str', 'required': True}]
}

最终通过get_tools()将自定义的函数都暴露出去。

在上述demo中,其实是demo_tool.py里调用了get_tools()获取到所有的自定义函数。


def get_tools() -> dict:return copy.deepcopy(_TOOL_DESCRIPTIONS)

现在我们来自定义一个kuakuawo()函数


@register_tool
def kuakuawo(name: Annotated[str, 'The name of the user', True], 
) -> str:"""Generates a awesome praise for user"""return f"{name} 你真的太棒了"

看看效果

 参考:

  1. LLM大语言模型(一):ChatGLM3-6B本地部署-CSDN博客
  2. LLM大语言模型(二):Streamlit 无需前端经验也能画web页面-CSDN博客

这篇关于LLM大语言模型(三):使用ChatGLM3-6B的函数调用功能前先学会Python的装饰器的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/536061

相关文章

使用DeepSeek API 结合VSCode提升开发效率

《使用DeepSeekAPI结合VSCode提升开发效率》:本文主要介绍DeepSeekAPI与VisualStudioCode(VSCode)结合使用,以提升软件开发效率,具有一定的参考价值... 目录引言准备工作安装必要的 VSCode 扩展配置 DeepSeek API1. 创建 API 请求文件2.

使用TomCat,service输出台出现乱码的解决

《使用TomCat,service输出台出现乱码的解决》本文介绍了解决Tomcat服务输出台中文乱码问题的两种方法,第一种方法是修改`logging.properties`文件中的`prefix`和`... 目录使用TomCat,service输出台出现乱码问题1解决方案问题2解决方案总结使用TomCat,

解决IDEA使用springBoot创建项目,lombok标注实体类后编译无报错,但是运行时报错问题

《解决IDEA使用springBoot创建项目,lombok标注实体类后编译无报错,但是运行时报错问题》文章详细描述了在使用lombok的@Data注解标注实体类时遇到编译无误但运行时报错的问题,分析... 目录问题分析问题解决方案步骤一步骤二步骤三总结问题使用lombok注解@Data标注实体类,编译时

C语言小项目实战之通讯录功能

《C语言小项目实战之通讯录功能》:本文主要介绍如何设计和实现一个简单的通讯录管理系统,包括联系人信息的存储、增加、删除、查找、修改和排序等功能,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录功能介绍:添加联系人模块显示联系人模块删除联系人模块查找联系人模块修改联系人模块排序联系人模块源代码如下

Java中使用Java Mail实现邮件服务功能示例

《Java中使用JavaMail实现邮件服务功能示例》:本文主要介绍Java中使用JavaMail实现邮件服务功能的相关资料,文章还提供了一个发送邮件的示例代码,包括创建参数类、邮件类和执行结... 目录前言一、历史背景二编程、pom依赖三、API说明(一)Session (会话)(二)Message编程客

C++中使用vector存储并遍历数据的基本步骤

《C++中使用vector存储并遍历数据的基本步骤》C++标准模板库(STL)提供了多种容器类型,包括顺序容器、关联容器、无序关联容器和容器适配器,每种容器都有其特定的用途和特性,:本文主要介绍C... 目录(1)容器及简要描述‌php顺序容器‌‌关联容器‌‌无序关联容器‌(基于哈希表):‌容器适配器‌:(

Python判断for循环最后一次的6种方法

《Python判断for循环最后一次的6种方法》在Python中,通常我们不会直接判断for循环是否正在执行最后一次迭代,因为Python的for循环是基于可迭代对象的,它不知道也不关心迭代的内部状态... 目录1.使用enuhttp://www.chinasem.cnmerate()和len()来判断for

使用Python实现高效的端口扫描器

《使用Python实现高效的端口扫描器》在网络安全领域,端口扫描是一项基本而重要的技能,通过端口扫描,可以发现目标主机上开放的服务和端口,这对于安全评估、渗透测试等有着不可忽视的作用,本文将介绍如何使... 目录1. 端口扫描的基本原理2. 使用python实现端口扫描2.1 安装必要的库2.2 编写端口扫

使用Python实现操作mongodb详解

《使用Python实现操作mongodb详解》这篇文章主要为大家详细介绍了使用Python实现操作mongodb的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、示例二、常用指令三、遇到的问题一、示例from pymongo import MongoClientf

SQL Server使用SELECT INTO实现表备份的代码示例

《SQLServer使用SELECTINTO实现表备份的代码示例》在数据库管理过程中,有时我们需要对表进行备份,以防数据丢失或修改错误,在SQLServer中,可以使用SELECTINT... 在数据库管理过程中,有时我们需要对表进行备份,以防数据丢失或修改错误。在 SQL Server 中,可以使用 SE