【chatglm2】使用Python在CPU环境中运行 chatglm.cpp 可以实现本地使用CPU运行chatglm2模型,速度也特别的快可以本地部署,把现有项目进行AI的改造。

本文主要是介绍【chatglm2】使用Python在CPU环境中运行 chatglm.cpp 可以实现本地使用CPU运行chatglm2模型,速度也特别的快可以本地部署,把现有项目进行AI的改造。,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1,项目地址

https://github.com/li-plus/chatglm.cpp.git

这个项目和llama.cpp 项目类似,使用C++ 去运行模型的。
项目使用了 ggml 这个核心模块,去运行的。
可以支持在 cpu 上面跑模型。

ChatGLM2-6B 是开源中英双语对话模型 ChatGLM-6B 的第二代版本,在保留了初代模型对话流畅、部署门槛较低等众多优秀特性的基础之上,ChatGLM2-6B 引入了如下新特性:

更强大的性能: 基于 ChatGLM 初代模型的开发经验,我们全面升级了 ChatGLM2-6B 的基座模型。ChatGLM2-6B 使用了 GLM 的混合目标函数,经过了 1.4T 中英标识符的预训练与人类偏好对齐训练,评测结果显示,相比于初代模型,ChatGLM2-6B 在 MMLU(+23%)、CEval(+33%)、GSM8K(+571%) 、BBH(+60%)等数据集上的性能取得了大幅度的提升,在同尺寸开源模型中具有较强的竞争力。
更长的上下文: 基于 FlashAttention 技术,我们将基座模型的上下文长度(Context Length)由 ChatGLM-6B 的 2K 扩展到了 32K,并在对话阶段使用 8K 的上下文长度训练,允许更多轮次的对话。但当前版本的 ChatGLM2-6B 对单轮超长文档的理解能力有限,我们会在后续迭代升级中着重进行优化。
更高效的推理: 基于 Multi-Query Attention 技术,ChatGLM2-6B 有更高效的推理速度和更低的显存占用:在官方的模型实现下,推理速度相比初代提升了 42%,INT4 量化下,6G 显存支持的对话长度由 1K 提升到了 8K。

2,准备环境,使用python的docker进行安装

下载代码:

git clone --recursive https://github.com/li-plus/chatglm.cpp.git

要是超时可以分开下载:

git clone  https://github.com/li-plus/chatglm.cpp.git
cd chatglm.cpp/third_partygit clone https://github.com/ggerganov/ggml.git
git clone https://github.com/pybind/pybind11.git
git clone https://github.com/google/sentencepiece.git

要是网络不好可以这样下载,速度也快:

git clone  https://ghproxy.com/https://github.com/li-plus/chatglm.cpp.git
cd chatglm.cpp/third_partygit clone https://ghproxy.com/https://github.com/ggerganov/ggml.git
git clone https://ghproxy.com/https://github.com/pybind/pybind11.git
git clone https://ghproxy.com/https://github.com/google/sentencepiece.git

然后运行docker 并配置python 的源:

docker run -itd --name python -p 8000:8000 -p 7860:7860 -v `pwd`/chatglm.cpp:/data python:slim-bullseyedocker exec -it python bashpip config set global.index-url https://mirrors.aliyun.com/pypi/simple/
pip config set install.trusted-host mirrors.aliyun.com/pypi/simple/echo "deb https://mirrors.aliyun.com/debian/ bullseye main contrib non-free" > /etc/apt/sources.list && \
echo "deb https://mirrors.aliyun.com/debian/ bullseye-updates main contrib non-free" >> /etc/apt/sources.list && \
echo "deb https://mirrors.aliyun.com/debian/ bullseye-backports main contrib non-free" >> /etc/apt/sources.list && \
echo "deb https://mirrors.aliyun.com/debian-security/ bullseye-security main" >> /etc/apt/sources.list 

3,安装依赖包,使用特殊命令安装pytorch的cpu版本

只安装 cpu 版本的 pytorch ,可以减少镜像大小。
特别注意pytorch2.0 只支持 3.10 的最低版本,其他版本安装不上。

apt-get update && apt-get -y install g++ cmake# 只是安装 cpu 的版本:
pip3 install torch==2.0.1+cpu torchvision==0.15.2+cpu torchaudio==2.0.2 --index-url https://download.pytorch.org/whl/cpupip3 install uvicorn fastapi==0.92.0 sse_starlette chatglm-cpp tabulate tqdm gradio transformers==4.30.2

4,进行模型转换,把chatglm2-6b模型转换下

需要下载模型,安装git-lfs 把模型下载即可

cd /data
apt-get install git-lfs
# 下载模型
git clone https://huggingface.co/THUDM/chatglm2-6b-int4# 然后就可以转换模型了,chatglm2-6b-int4 是下载的模型文件夹
python3 convert.py -i chatglm2-6b-int4 -t q4_0 -o chatglm2-ggml.bin# 稍等下,如果没有报错信息,说明转换成功。会有个  chatglm2-ggml.bin 文件3.3G  chatglm-ggml.bin # 说明转换成了。

ChatGLM2-6B,各种尺寸的模型,需要消耗的资源:

Q4_0Q4_1Q5_0Q5_1Q8_0F16F32
ms/token (CPU @ Platinum 8260)64717983106189372
ms/token (CUDA @ V100 SXM2)9.79.410.310.214.019.133.0
ms/token (MPS @ M2 Ultra)11.011.7N/AN/AN/A32.1N/A
file size3.3GB3.7GB4.0GB4.4GB6.2GB12GB24GB
mem usage3.4GB3.8GB4.1GB4.5GB6.2GB12GB23GB

5,启动web demo 界面,启动api 接口

需要修改下 web_demo.py 的最后一行:
因为是docker 做端口映射,需要把 IP 修改成 0.0.0.0 本机就可以访问了。


demo.queue().launch(share=False, inbrowser=True,server_name="0.0.0.0", server_port=7860)
cd /data/examples
python3 web_demo.py Running on local URL:  http://0.0.0.0:7860
To create a public link, set `share=True` in `launch()`.

在这里插入图片描述

如果没有报错,说明启动成功了,端口是7860 ,直接通过web访问即可。

启动 api 接口:

python3 api_demo.py 
INFO:     Started server process [5843]
INFO:     Waiting for application startup.
INFO:     Application startup complete.
INFO:     Uvicorn running on http://0.0.0.0:8000 (Press CTRL+C to quit)

执行命令测试接口,和chatgpt 的接口是一样的。

curl http://127.0.0.1:8000/v1/completions -H 'Content-Type: application/json' -d '{"prompt": "你好"}'
{"object":"text_completion","response":"你好👋!我是人工智能助手 ChatGLM2-6B,很高兴见到你,欢迎问我任何问题。","model":"chatglm2-6b","choices":[{"text":"你好👋!我是人工智能助手 ChatGLM2-6B,很高兴见到你,欢迎问我任何问题。","index":0,"finish_reason":"stop"}],"usage":{}
}

6,使用docker 把镜像的运行打包,在CPU下运行环境搭建

dockerfile

# 构建 python 
# FROM python:slim-bullseye 使用最新的slim 版本。
# docker build . -t chatglm.cpp:latest
FROM python:slim-bullseye as builderRUN echo "deb https://mirrors.aliyun.com/debian/ bullseye main contrib non-free" > /etc/apt/sources.list && \
echo "deb https://mirrors.aliyun.com/debian/ bullseye-updates main contrib non-free" >> /etc/apt/sources.list && \
echo "deb https://mirrors.aliyun.com/debian/ bullseye-backports main contrib non-free" >> /etc/apt/sources.list && \
echo "deb https://mirrors.aliyun.com/debian-security/ bullseye-security main" >> /etc/apt/sources.list && \
pip config set global.index-url https://mirrors.aliyun.com/pypi/simple/  && \
pip config set install.trusted-host mirrors.aliyun.com/pypi/simple/RUN apt-get update && apt-get -y install g++ cmake && \pip3 install torch==2.0.1+cpu torchvision==0.15.2+cpu torchaudio==2.0.2 \--index-url https://download.pytorch.org/whl/cpu && \pip3 install uvicorn fastapi==0.92.0 sse_starlette chatglm-cpp tabulate tqdm gradio transformers==4.30.2# 拷贝本地文件到目录
COPY . /data# service
FROM python:slim-bullseye# 直接使用基础镜像然后拷贝 site-packages 安装包即可。
COPY --from=builder /data/examples /data/examples
COPY --from=builder /usr/local/lib/python3.11/site-packages /usr/local/lib/python3.11/site-packagesWORKDIR /data
# 设置python 的环境变量和 fask app文件。
ENV LC_ALL="C.UTF-8" LANG="C.UTF-8"
ENV PYTHONPATH="/data"EXPOSE 8000 7860ENTRYPOINT ["/data/examples/docker-entrypoint.sh"]CMD ["/bin/sh"]

其中启动脚本 docker-entrypoint.sh 是:

#!/bin/shls -lhecho "############# start python3 web_demo.py #############"
cd /data/examples
python3 web_demo.py
sleep 99999d

执行打包命令:

docker build . -t chatglm.cpp:latest

然后就可以启动了,必须注意不能挂载当前的源代码文件夹了,否则会报错:
ModuleNotFoundError: No module named ‘chatglm_cpp._C’
https://github.com/li-plus/chatglm.cpp/issues/91
尝试下cd到别的路径下运行,在chatglm.cpp目录下执行,包名会跟仓库里的chatglm_cpp文件夹冲突

这样启动就可以了:

docker run -itd --name chatglm -p 8000:8000 -p 7860:7860 -v `pwd`/chatglm.cpp/chatglm-ggml.bin:/data/chatglm-ggml.bin chatglm.cpp:latest

然后就可以访问web 界面了。

7,总结

也可以支持英文,但是最后几个字有点问题。最后有点乱码,不知道是不是因为模型裁剪的问题。
同时也有可能是原始素材就有这个问题。
在这里插入图片描述
可以使用docker 在 CPU上面运行 chatglm ,同时安装了 pytorch 的CPU 版本,镜像缩小到 1.5 G了。
并且速度也是非常的快了。可以在非GPU的机器上面运行了。可以解决很多问题呢。

这篇关于【chatglm2】使用Python在CPU环境中运行 chatglm.cpp 可以实现本地使用CPU运行chatglm2模型,速度也特别的快可以本地部署,把现有项目进行AI的改造。的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/535088

相关文章

Python如何实现读取csv文件时忽略文件的编码格式

《Python如何实现读取csv文件时忽略文件的编码格式》我们再日常读取csv文件的时候经常会发现csv文件的格式有多种,所以这篇文章为大家介绍了Python如何实现读取csv文件时忽略文件的编码格式... 目录1、背景介绍2、库的安装3、核心代码4、完整代码1、背景介绍我们再日常读取csv文件的时候经常

Golang中map缩容的实现

《Golang中map缩容的实现》本文主要介绍了Go语言中map的扩缩容机制,包括grow和hashGrow方法的处理,具有一定的参考价值,感兴趣的可以了解一下... 目录基本分析带来的隐患为什么不支持缩容基本分析在 Go 底层源码 src/runtime/map.go 中,扩缩容的处理方法是 grow

Go 1.23中Timer无buffer的实现方式详解

《Go1.23中Timer无buffer的实现方式详解》在Go1.23中,Timer的实现通常是通过time包提供的time.Timer类型来实现的,本文主要介绍了Go1.23中Timer无buff... 目录Timer 的基本实现无缓冲区的实现自定义无缓冲 Timer 实现更复杂的 Timer 实现总结在

基于Python实现多语言朗读与单词选择测验

《基于Python实现多语言朗读与单词选择测验》在数字化教育日益普及的今天,开发一款能够支持多语言朗读和单词选择测验的程序,对于语言学习者来说无疑是一个巨大的福音,下面我们就来用Python实现一个这... 目录一、项目概述二、环境准备三、实现朗读功能四、实现单词选择测验五、创建图形用户界面六、运行程序七、

如何使用Docker部署FTP和Nginx并通过HTTP访问FTP里的文件

《如何使用Docker部署FTP和Nginx并通过HTTP访问FTP里的文件》本文介绍了如何使用Docker部署FTP服务器和Nginx,并通过HTTP访问FTP中的文件,通过将FTP数据目录挂载到N... 目录docker部署FTP和Nginx并通过HTTP访问FTP里的文件1. 部署 FTP 服务器 (

Vue中动态权限到按钮的完整实现方案详解

《Vue中动态权限到按钮的完整实现方案详解》这篇文章主要为大家详细介绍了Vue如何在现有方案的基础上加入对路由的增、删、改、查权限控制,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、数据库设计扩展1.1 修改路由表(routes)1.2 修改角色与路由权限表(role_routes)二、后端接口设计

解读docker运行时-itd参数是什么意思

《解读docker运行时-itd参数是什么意思》在Docker中,-itd参数组合用于在后台运行一个交互式容器,同时保持标准输入和分配伪终端,这种方式适合需要在后台运行容器并保持交互能力的场景... 目录docker运行时-itd参数是什么意思1. -i(或 --interactive)2. -t(或 --

MySQL 日期时间格式化函数 DATE_FORMAT() 的使用示例详解

《MySQL日期时间格式化函数DATE_FORMAT()的使用示例详解》`DATE_FORMAT()`是MySQL中用于格式化日期时间的函数,本文详细介绍了其语法、格式化字符串的含义以及常见日期... 目录一、DATE_FORMAT()语法二、格式化字符串详解三、常见日期时间格式组合四、业务场景五、总结一、

浅析Python中的绝对导入与相对导入

《浅析Python中的绝对导入与相对导入》这篇文章主要为大家详细介绍了Python中的绝对导入与相对导入的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1 Imports快速介绍2 import语句的语法2.1 基本使用2.2 导入声明的样式3 绝对import和相对i

C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)

《C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)》本文主要介绍了C#集成DeepSeek模型实现AI私有化的方法,包括搭建基础环境,如安装Ollama和下载DeepS... 目录前言搭建基础环境1、安装 Ollama2、下载 DeepSeek R1 模型客户端 ChatBo