池化层(pooling)

2023-12-25 03:30
文章标签 pooling 池化层

本文主要是介绍池化层(pooling),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、池化层

1、最大池化层

2、平均池化层

3、总结

二、代码实现

1、最大池化与平均池化

2、填充和步幅(padding和strides)

3、多个通道

4、总结


一、池化层

1、最大池化层

2、平均池化层

3、总结

  • 池化层返回窗口中最大或平均值
  • 环节卷积层对位置的敏感性
  • 同样有窗口大小、填充和步幅作为超参数

二、代码实现

       通常当我们处理图像时,我们希望逐渐降低隐藏表示的空间分辨率、聚集信息,这样随着我们在神经网络中层叠的上升,每个神经元对其敏感的感受野(输入)就越大。

       而我们的机器学习任务通常会跟全局图像的问题有关(例如,“图像是否包含一只猫呢?”),所以我们最后一层的神经元应该对整个输入的全局敏感。通过逐渐聚合信息,生成越来越粗糙的映射,最终实现学习全局表示的目标,同时将卷积图层的所有优势保留在中间层。

1、最大池化与平均池化

       在下面的代码中的`pool2d`函数,我们实现池化层的前向传播。然而,这里我们没有卷积核,输出为输入中每个区域的最大值或平均值。

import torch
from torch import nn
from d2l import torch as d2l
def pool2d(X, pool_size, mode='max'):p_h, p_w = pool_size    # 池化核的尺寸Y = torch.zeros((X.shape[0] - p_h + 1, X.shape[1] - p_w + 1))   # 由输入尺寸核池化核的尺寸得到输出的尺寸for i in range(Y.shape[0]):for j in range(Y.shape[1]):if mode == 'max':       # 最大池化Y[i, j] = X[i: i + p_h, j: j + p_w].max()elif mode == 'avg':     # 平均池化Y[i, j] = X[i: i + p_h, j: j + p_w].mean()return Y

       我们可以构建下图中的输入张量`X`,验证二维最大汇聚层的输出。

X = torch.tensor([[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]])
pool2d(X, (2, 2))
tensor([[4., 5.],[7., 8.]])

       此外,我们还可以验证平均汇聚层。

pool2d(X, (2, 2), 'avg')
tensor([[2., 3.],[5., 6.]])

2、填充和步幅(padding和strides)

       与卷积层一样,池化层也可以改变输出形状,我们可以通过填充和步幅以获得所需的输出形状。下面,我们用深度学习框架中内置的二维最大池化层,来演示池化层中填充和步幅的使用。我们首先构造了一个输入张量`X`,它有四个维度,其中样本数和通道数都是1。

X = torch.arange(16, dtype=torch.float32).reshape((1, 1, 4, 4)) # (样本数, 通道数, 高, 宽)
print(X)
tensor([[[[ 0.,  1.,  2.,  3.],[ 4.,  5.,  6.,  7.],[ 8.,  9., 10., 11.],[12., 13., 14., 15.]]]])

       默认情况下,深度学习框架中的步幅与池化窗口的大小相同。因此,如果我们使用形状为`(3, 3)`的汇聚窗口,那么默认情况下,我们得到的步幅形状为`(3, 3)`。

pool2d = nn.MaxPool2d(3)    # 使用形状为(3, 3)的池化窗口,于是默认使用步幅形状为(3, 3)
pool2d(X)
tensor([[[[10.]]]])

       填充和步幅可以手动设定。

pool2d = nn.MaxPool2d(3, padding=1, stride=2)
pool2d(X)
tensor([[[[ 5.,  7.],[13., 15.]]]])

       当然,我们可以设定一个任意大小的矩形汇聚窗口,并分别设定填充和步幅的高度和宽度。

pool2d = nn.MaxPool2d((2, 3), stride=(2, 3), padding=(0, 1))
pool2d(X)
tensor([[[[ 5.,  7.],[13., 15.]]]])

3、多个通道

       在处理多通道输入数据时,池化层在每个输入通道上单独运算,而不是像卷积层一样在通道上对输入进行汇总。这意味着池化层的输出通道数与输入通道数相同。下面,我们将在通道维度上连结张量`X`和`X + 1`,以构建具有2个通道的输入。

X = torch.cat((X, X + 1), 1)    # 在通道维度叠加,因此是1
print(X)
print(X.shape)
tensor([[[[ 0.,  1.,  2.,  3.],[ 4.,  5.,  6.,  7.],[ 8.,  9., 10., 11.],[12., 13., 14., 15.]],[[ 1.,  2.,  3.,  4.],[ 5.,  6.,  7.,  8.],[ 9., 10., 11., 12.],[13., 14., 15., 16.]]]])
torch.Size([1, 2, 4, 4])

       如下所示,池化后输出通道的数量仍然是2。

pool2d = nn.MaxPool2d(3, padding=1, stride=2)
print(pool2d(X))
print(X.shape)
tensor([[[[ 5.,  7.],[13., 15.]],[[ 6.,  8.],[14., 16.]]]])
torch.Size([1, 2, 4, 4])

4、总结

  • 最大池化层会输出该窗口内的最大值,平均池化层会输出该窗口内的平均值。
  • 池化层的主要优点之一是减轻卷积层对位置的过度敏感。
  • 我们可以指定池化层的填充和步幅。
  • 使用最大池化层以及大于1的步幅,可减少空间维度(如高度和宽度)。
  • 池化层的输出通道数与输入通道数相同。

这篇关于池化层(pooling)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/534119

相关文章

Convolutional layers/Pooling layers/Dense Layer 卷积层/池化层/稠密层

Convolutional layers/Pooling layers/Dense Layer 卷积层/池化层/稠密层 Convolutional layers 卷积层 Convolutional layers, which apply a specified number of convolution filters to the image. For each subregion, the

【小白深度学习入门】【2】池化层详解:工作原理、维度计算、池化类型

《博主简介》 小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。 👍感谢小伙伴们点赞、关注! 《------往期经典推荐------》 一、AI应用软件开发实战专栏【链接】 项目名称项目名称1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】3.【手势识别系统开发】4.【人脸面部活体检测系统开发】5.【图片风格快速迁移软件开发】6

C++卷积神经网络实例:tiny_cnn代码详解(6)——average_pooling_layer层结构类分析

在之前的博文中我们着重分析了convolutional_layer类的代码结构,在这篇博文中分析对应的下采样层average_pooling_layer类:   一、下采样层的作用   下采样层的作用理论上来说由两个,主要是降维,其次是提高一点特征的鲁棒性。在LeNet-5模型中,每一个卷积层后面都跟着一个下采样层:   原因就是当图像在经过卷积层之后,由于每个卷积层都有多个卷积

HBase Connection Pooling

两种方法获得连接: Configuration configuration = HBaseConfiguration.create(); ExecutorService executor = Executors.newFixedThreadPool(nPoolSize); (1)旧API中:          Connection connection = HConnectionManag

一文彻底搞懂CNN - 卷积和池化(Convolution And Pooling)

Convolutional Neural Network CNN(卷积神经网络)最核心的两大操作就是卷积(Convolution)和池化(Pooling)。卷积用于特征提取,通过卷积核在输入数据上滑动计算加权和;池化用于特征降维,通过聚合统计池化窗口内的元素来减少数据空间大小。 Convolution And Pooling 一、_卷积(Convolution) 卷积(Convol

深度学习入门:卷积神经网络 | CNN概述,图像基础知识,卷积层,池化层(超详解!!!)

目录 🍔 前言 🍔 图像基础知识 1. 像素和通道的理解 2. 小节 🍔 卷积层 1. 卷积计算 2. Padding 3. Stride 4. 多通道卷积计算 5. 多卷积核卷积计算 6. 特征图大小 7. PyTorch 卷积层 API 7. 小节 🍔 池化层 1. 池化层计算​编辑 2. Stride 3. Padding 4. 多通道池化计算

CV-笔记-重读Fast R-CNN的ROI pooling

目录 1 原图上的ROI坐标如何映射到feature map上?2 ROI Pooling是如何做?3 ROI Pooling的梯度反向传播是怎么做的?4 那么多的ROI Pooling做完以后是怎么进入到全连接层进行训练的?5 正负样本怎么制作?6 loss怎么计算?smooth L1 7回归的数值是什么?引用 Fast R-CNN主要是使用了一个ROI Pooling操作来对候

神经网络学习-池化层

池化层方法 池化一般是用来对卷积层进行降维 空洞卷积,通过在卷积核的元素之间插入“空洞”(即零),可以在不增加参数量和计算量的情况下扩大卷积核的感受野。这对于捕捉图像中的多尺度信息特别有用。 池化的默认步长是池化核的大小 channels 表示数据的通道数。对于不同类型的数据,通道的含义可能会有所不同。在图像处理中,通常表示颜色通道,比如 RGB 图像有三个通道(红、绿、蓝),灰度图像只有

pytorch--Pooling layers

文章目录 1.torch.nn.MaxPool1d()2.torch.nn.MaxPool2d3.torch.nn.AvgPool2d()4.torch.nn.FractionalMaxPool2d()5.torch.nn.AdaptiveMaxPool2d()6.torch.nn.AdaptiveAvgPool2d() 1.torch.nn.MaxPool1d()   t

【YOLOv5/v7改进系列】改进池化层为RT-DETR的AIFI

一、导言 Real-Time DEtection TRansformer(RT-DETR),是一种实时端到端目标检测器,克服了Non-Maximum Suppression(NMS)对速度和准确性的影响。通过设计高效的混合编码器和不确定性最小化查询选择,RT-DETR在保持准确性的同时提高了速度,实现了实时检测的要求。实验结果表明,RT-DETR在COCO数据集上达到了53.1%的平均精度(