导行电磁波从纵向场分量求其他方向分量的矩阵表示

2023-12-24 06:04

本文主要是介绍导行电磁波从纵向场分量求其他方向分量的矩阵表示,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

导行电磁波从纵向场分量求解其他方向分量的矩阵表示

导行电磁波传播的特点

电磁波在均匀、线性、各向同性的空间中沿着 z z z轴传播,可用分离变量法将时间轴、 z z z轴与 x , y x,y x,y轴分离,电磁波的形式可表示为:
E ⃗ = E ⃗ ( x , y ) e − γ z e j ω t H ⃗ = H ⃗ ( x , y ) e − γ z e j ω t \begin{align} \vec E&=\vec E(x,y) \textrm e^{-\gamma z} \textrm e^{j\omega t}\\ \vec H&=\vec H(x,y) \textrm e^{-\gamma z} \textrm e^{j\omega t}\\ \end{align} E H =E (x,y)eγzet=H (x,y)eγzet

纵向场分量的求解导行电磁波的电场和磁场

对于这种波的求解,可以先求出电场、磁场在 z z z轴的分量,然后根据,然后再根据麦克斯韦方程组求出电磁场在 x , y x,y x,y, 由导行电磁波的数学表达式(1), (2)可知, ∂ ∂ z H x = − γ H x \frac{\partial}{\partial z}H_x=-\gamma H_x zHx=γHx, ∂ ∂ z H y = − γ H y \frac{\partial}{\partial z}H_y=-\gamma H_y zHy=γHy, ∂ ∂ z E x = − γ E x \frac{\partial}{\partial z}E_x=-\gamma E_x zEx=γEx, ∂ ∂ z E y = − γ E y \frac{\partial}{\partial z}E_y=-\gamma E_y zEy=γEy.

从纵向场分量求解其他方向电场和磁场分量及其矩阵表示

麦克斯韦方程组可表示如下:
∇ × H ⃗ = ∂ D ⃗ ∂ t + J ⃗ ∇ × E ⃗ = − ∂ B ⃗ ∂ t ∇ ⋅ D ⃗ = ρ ∇ ⋅ B ⃗ = 0 \begin{align} \nabla \times \vec H &= \frac{\partial \vec D}{\partial t}+\vec J\\ \nabla \times \vec E &= - \frac{\partial \vec B}{\partial t}\\ \nabla \cdotp \vec D &= \rho\\ \nabla \cdotp \vec B &= 0 \end{align} ×H ×E D B =tD +J =tB =ρ=0
如果已知 H z , E z H_z, E_z Hz,Ez并且知道导行电磁波的形式如公式(1)和(2)所示,并认为传播空间中不存在电荷与电流, J ⃗ = 0 , ρ = 0 \vec J=0, \rho=0 J =0,ρ=0,方程式(3)-(4)可表示为:

∇ × H ⃗ = [ i j k ∂ ∂ x ∂ ∂ y ∂ ∂ z H x H y H z ] = j ω ε E ⃗ ∇ × E ⃗ = [ i j k ∂ ∂ x ∂ ∂ y ∂ ∂ z E x E y E z ] = − j ω μ H ⃗ \begin{align} \nabla \times \vec H &=\begin{bmatrix} i & j & k \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z}\\ H_x &H_y&H_z \end{bmatrix} = j\omega \varepsilon \vec E\\ \nabla \times \vec E &= \begin{bmatrix} i & j & k \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z}\\ E_x &E_y&E_z \end{bmatrix} =- j\omega \mu \vec H\\ \end{align} ×H ×E = ixHxjyHykzHz =εE = ixExjyEykzEz =μH
将(7)式 x x x 分量展开得到(9),将(8)式 y y y 分量展开得到(10)
∂ ∂ y H z + γ H y = j ω ε E x ∂ ∂ x E z + γ E x = j ω μ H y \begin{align} \frac{\partial}{\partial y}H_z+\gamma H_y &=j\omega \varepsilon E_x\\ \frac{\partial}{\partial x}E_z+\gamma E_x &=j\omega \mu H_y\\ \end{align} yHz+γHyxEz+γEx=εEx=μHy
根据(9)和(10),得到用 H z , E z H_z, E_z Hz,Ez表示的 H y , E x H_y, E_x Hy,Ex

[ E x H y ] = − 1 k c 2 [ γ j ω μ j ω ε γ ] [ ∂ ∂ x 0 0 ∂ ∂ y ] [ E z H z ] \begin{align} \begin{bmatrix} E_x \\ H_y \end{bmatrix} &= -\frac{1}{k_c^2} \begin{bmatrix} \gamma & j\omega\mu \\ j\omega\varepsilon & \gamma \end{bmatrix} \begin{bmatrix} \frac{\partial}{\partial x} & 0 \\ 0 & \frac{\partial}{\partial y} \end{bmatrix} \begin{bmatrix} E_z \\ H_z \end{bmatrix} \\ \end{align} [ExHy]=kc21[γεμγ][x00y][EzHz]

将(7)式 y y y 分量展开得到(12),将(8)式 x x x 分量展开得到(13)
− ∂ ∂ x H z − γ H x = j ω ε E y ∂ ∂ y E z + γ E x = j ω μ H x \begin{align} -\frac{\partial}{\partial x}H_z-\gamma H_x &=j\omega \varepsilon E_y\\ \frac{\partial}{\partial y}E_z+\gamma E_x &=j\omega \mu H_x\\ \end{align} xHzγHxyEz+γEx=εEy=μHx
根据(12)和(13),得到用 H z , E z H_z, E_z Hz,Ez表示的 H x , E y H_x, E_y Hx,Ey

[ E y H x ] = − 1 k c 2 [ γ − j ω μ − j ω ε γ ] [ ∂ ∂ y 0 0 ∂ ∂ x ] [ E z H z ] \begin{align} \begin{bmatrix} E_y \\ H_x \end{bmatrix} &= -\frac{1}{k_c^2} \begin{bmatrix} \gamma & -j\omega\mu \\ -j\omega\varepsilon & \gamma \end{bmatrix} \begin{bmatrix} \frac{\partial}{\partial y} & 0 \\ 0 & \frac{\partial}{\partial x} \end{bmatrix} \begin{bmatrix} E_z \\ H_z \end{bmatrix} \\ \end{align} [EyHx]=kc21[γεμγ][y00x][EzHz]

这篇关于导行电磁波从纵向场分量求其他方向分量的矩阵表示的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/530766

相关文章

hdu 4565 推倒公式+矩阵快速幂

题意 求下式的值: Sn=⌈ (a+b√)n⌉%m S_n = \lceil\ (a + \sqrt{b}) ^ n \rceil\% m 其中: 0<a,m<215 0< a, m < 2^{15} 0<b,n<231 0 < b, n < 2^{31} (a−1)2<b<a2 (a-1)^2< b < a^2 解析 令: An=(a+b√)n A_n = (a +

线性因子模型 - 独立分量分析(ICA)篇

序言 线性因子模型是数据分析与机器学习中的一类重要模型,它们通过引入潜变量( latent variables \text{latent variables} latent variables)来更好地表征数据。其中,独立分量分析( ICA \text{ICA} ICA)作为线性因子模型的一种,以其独特的视角和广泛的应用领域而备受关注。 ICA \text{ICA} ICA旨在将观察到的复杂信号

hdu 6198 dfs枚举找规律+矩阵乘法

number number number Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Problem Description We define a sequence  F : ⋅   F0=0,F1=1 ; ⋅   Fn=Fn

嵌入式方向的毕业生,找工作很迷茫

一个应届硕士生的问题: 虽然我明白想成为技术大牛需要日积月累的磨练,但我总感觉自己学习方法或者哪些方面有问题,时间一天天过去,自己也每天不停学习,但总感觉自己没有想象中那样进步,总感觉找不到一个很清晰的学习规划……眼看 9 月份就要参加秋招了,我想毕业了去大城市磨练几年,涨涨见识,拓开眼界多学点东西。但是感觉自己的实力还是很不够,内心慌得不行,总怕浪费了这人生唯一的校招机会,当然我也明白,毕业

理解分类器(linear)为什么可以做语义方向的指导?(解纠缠)

Attribute Manipulation(属性编辑)、disentanglement(解纠缠)常用的两种做法:线性探针和PCA_disentanglement和alignment-CSDN博客 在解纠缠的过程中,有一种非常简单的方法来引导G向某个方向进行生成,然后我们通过向不同的方向进行行走,那么就会得到这个属性上的图像。那么你利用多个方向进行生成,便得到了各种方向的图像,每个方向对应了很多

线性代数|机器学习-P35距离矩阵和普鲁克问题

文章目录 1. 距离矩阵2. 正交普鲁克问题3. 实例说明 1. 距离矩阵 假设有三个点 x 1 , x 2 , x 3 x_1,x_2,x_3 x1​,x2​,x3​,三个点距离如下: ∣ ∣ x 1 − x 2 ∣ ∣ 2 = 1 , ∣ ∣ x 2 − x 3 ∣ ∣ 2 = 1 , ∣ ∣ x 1 − x 3 ∣ ∣ 2 = 6 \begin{equation} ||x

解析apollo纵向控制标定表程序

百度apollo采用标定表描述车辆速度、加速度与油门/刹车之间的关系。该表可使无人车根据当前车速与期望加速度得到合适的油门/刹车开合度。除了文献《Baidu Apollo Auto-Calibration System - An Industry-Level Data-Driven and Learning based Vehicle Longitude Dynamic Calibrating

从计组中从重温C中浮点数表示及C程序翻译过程

目录 移码​编辑  传统浮点表示格式 浮点数的存储(ieee 754)->修炼内功 例子:   ​编辑 浮点数取的过程   C程序翻译过程 移码  传统浮点表示格式 浮点数的存储(ieee 754)->修炼内功 根据国际标准IEEE(电⽓和电⼦⼯程协会)  32位 例子:    64位    IEEE754对有效数字M和

【线性代数】正定矩阵,二次型函数

本文主要介绍正定矩阵,二次型函数,及其相关的解析证明过程和各个过程的可视化几何解释(深蓝色字体)。 非常喜欢清华大学张颢老师说过的一段话:如果你不能用可视化的方式看到事情的结果,那么你就很难对这个事情有认知,认知就是直觉,解析的东西可以让你理解,但未必能让你形成直觉,因为他太反直觉了。 正定矩阵 定义 给定一个大小为 n×n 的实对称矩阵 A ,若对于任意长度为 n 的非零向量 ,有 恒成

[SWPUCTF 2021 新生赛]web方向(一到六题) 解题思路,实操解析,解题软件使用,解题方法教程

题目来源 NSSCTF | 在线CTF平台因为热爱,所以长远!NSSCTF平台秉承着开放、自由、共享的精神,欢迎每一个CTFer使用。https://www.nssctf.cn/problem   [SWPUCTF 2021 新生赛]gift_F12 这个题目简单打开后是一个网页  我们一般按F12或者是右键查看源代码。接着我们点击ctrl+f后快速查找,根据题目给的格式我们搜索c