yolo-nas无人机高空红外热数据小目标检测(教程+代码)

2023-12-21 19:01

本文主要是介绍yolo-nas无人机高空红外热数据小目标检测(教程+代码),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

  • YOLO-NAS是目前最新的YOLO目标检测模型。
  • 从一开始,它就在准确性方面击败了所有其他 YOLO 模型。
  • 与之前的 YOLO 模型相比,预训练的 YOLO-NAS 模型能够以更高的准确度检测更多目标。
  • 但是我们如何在自定义数据集上训练 YOLO NAS?

这将是我们本文的目标——在自定义数据集上训练不同的 YOLO NAS 模型。
在这里插入图片描述

YOLO-NAS训练

YOLO-NAS 的主要主张是它可以比以前的模型更好地检测更小的物体。尽管我们可以运行多个推理实验来分析结果,但在具有挑战性的数据集上对其进行训练将使我们有更好的理解。为此,我们将使用三个可用的预训练 YOLO-NAS 模型运行四个训练实验。为此,我们选择无人机热成像检测数据集。

在实验过程中,我们将遍历 YOLO-NAS 的完整训练流程。

  1. 用于训练 YOLO NAS 的物体检测数据集
  2. 在自定义数据集上训练 YOLO NAS
  3. 微调 YOLO NAS 模型
  4. 使用经过训练的 YOLO NAS 模型对测试图像进​​行推理
  5. YOLO NAS 训练模型视频推理结果
  6. 结论

训练 YOLO NAS 的物体检测数据集

用于训练 YOLO NAS 的物体检测数据集
我们先来熟悉一下无人机高空红外热数据集。

它包含夜间无人机热图像。鉴于无人机的高空记录,大多数物体看起来都很小。这使得该数据集对于大多数目标检测模型来说都难以解决。然而,它是完美的自定义数据集来训练 YOLO-NAS 以检查其在小物体上的准确性。

该数据集包含 5 个对象类别的 2898 张热图像:

  • 自行车
  • 其他车辆
  • 不在乎

数据集已包含训练、验证和测试分割。有 2008 个训练样本、287 个验证样本和 571 个测试样本。该数据集已经以 YOLO 注释格式存在。

以下是数据集中的一些未注释的地面实况图像。
在这里插入图片描述
很明显,除了汽车之外,如果没有适当的注释,人眼无法看到地面上的其他物体。

要了解每个对象的位置,请查看一些带注释的图像
在这里插入图片描述

接下来,我们将深入研究本文的编码部分。下载本文的代码后,您将发现三个笔记本。

YOLO_NAS_Fine_Tuning.ipynb
YOLO_NAS_Large_Fine_Tuning.ipynb
inference.ipynb
YOLO_NAS_Fine_Tuning.ipynb我们将非常详细地浏览这些笔记本。这两个包含在自定义数据集上训练 YOLO NAS 以及稍后使用经过训练的模型运行推理所需的所有步骤。培训笔记本包含下载数据集的代码。

以下代码将训练三个 YOLO NAS 模型:

YOLO NAS (小)
YOLO NAS m(中型)
YOLO NAS l (大)
在开始之前,您可以安装super-gradients我们在整个训练和推理过程中需要的软件包。尽管笔记本包含执行此操作的命令,您也可以使用以下命令安装它:

pip install

数据集下载和目录结构
接下来的几个代码块下载数据集并将其解压到当前目录,我们将在此处跳过。所有笔记本和数据集都存在于父数据集目录中,其结构如下

hit-uav
├── dataset.yaml
├── images
│   ├── test
│   ├── train
│   └── val
└── labels├── test├── train└── val

YOLO NAS模型训练

由于我们正在训练三个不同的模型,因此我们需要稍微自动化该过程。我们可以定义一个包含三个模型名称的列表,并根据该列表设置检查点目录。这还将加载适当的模型,因为列表中的模型名称与 API 中的模型名称相匹配super-gradients。

models_to_train = ['yolo_nas_s','yolo_nas_m','yolo_nas_l'
]CHECKPOINT_DIR = 'checkpoints'for model_to_train in models_to_train:trainer = Trainer(experiment_name=model_to_train, ckpt_root_dir=CHECKPOINT_DIR)model = models.get(model_to_train, num_classes=len(dataset_params['classes']), pretrained_weights="coco")trainer.train(model=model, training_params=train_params, train_loader=train_data, valid_loader=val_data)

三个训练实验将依次运行,所有模型检查点将保存在各自的目录中。

YOLO NAS 训练参数

在我们开始微调过程之前,训练参数是最重要的组成部分。这是我们定义要训练的纪元数、要监控的验证指标以及学习率等的地方。、

models_to_train = ['yolo_nas_s','yolo_nas_m','yolo_nas_l'
]CHECKPOINT_DIR = 'checkpoints'for model_to_train in models_to_train:trainer = Trainer(experiment_name=model_to_train, ckpt_root_dir=CHECKPOINT_DIR)model = models.get(model_to_train, num_classes=len(dataset_params['classes']), pretrained_weights="coco")trainer.train(model=model, training_params=train_params, train_loader=train_data, valid_loader=val_data)

微调结果

在这里插入图片描述

YOLO NAS 模型对测试图像进​​行推理

该数据集包含一个测试分割,我们保留该测试分割用于推理目的。您可以执行笔记本中的代码单元inference.ipynb来运行推理实验。它促成了一些事情:

首先,它从检查点目录加载经过最佳训练的 YOLO NAS 权重。
然后它对测试图像运行推理。执行此操作时,代码会将推理结果保存在inference_results/images具有原始图像名称的目录中。
获得结果后,笔记本通过在预测图像上重叠地面实况注释来显示一组图像。
最后一步将告诉我们训练模型错过了哪些对象以及模型是否做出了错误的预测。

让我们通过可视化一些推理预测来开始我们的分析。
在这里插入图片描述

这篇关于yolo-nas无人机高空红外热数据小目标检测(教程+代码)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/521130

相关文章

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

Elasticsearch 在 Java 中的使用教程

《Elasticsearch在Java中的使用教程》Elasticsearch是一个分布式搜索和分析引擎,基于ApacheLucene构建,能够实现实时数据的存储、搜索、和分析,它广泛应用于全文... 目录1. Elasticsearch 简介2. 环境准备2.1 安装 Elasticsearch2.2 J

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当

Linux系统中卸载与安装JDK的详细教程

《Linux系统中卸载与安装JDK的详细教程》本文详细介绍了如何在Linux系统中通过Xshell和Xftp工具连接与传输文件,然后进行JDK的安装与卸载,安装步骤包括连接Linux、传输JDK安装包... 目录1、卸载1.1 linux删除自带的JDK1.2 Linux上卸载自己安装的JDK2、安装2.1

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

用js控制视频播放进度基本示例代码

《用js控制视频播放进度基本示例代码》写前端的时候,很多的时候是需要支持要网页视频播放的功能,下面这篇文章主要给大家介绍了关于用js控制视频播放进度的相关资料,文中通过代码介绍的非常详细,需要的朋友可... 目录前言html部分:JavaScript部分:注意:总结前言在javascript中控制视频播放

Linux卸载自带jdk并安装新jdk版本的图文教程

《Linux卸载自带jdk并安装新jdk版本的图文教程》在Linux系统中,有时需要卸载预装的OpenJDK并安装特定版本的JDK,例如JDK1.8,所以本文给大家详细介绍了Linux卸载自带jdk并... 目录Ⅰ、卸载自带jdkⅡ、安装新版jdkⅠ、卸载自带jdk1、输入命令查看旧jdkrpm -qa

Java使用Curator进行ZooKeeper操作的详细教程

《Java使用Curator进行ZooKeeper操作的详细教程》ApacheCurator是一个基于ZooKeeper的Java客户端库,它极大地简化了使用ZooKeeper的开发工作,在分布式系统... 目录1、简述2、核心功能2.1 CuratorFramework2.2 Recipes3、示例实践3

Spring Boot 3.4.3 基于 Spring WebFlux 实现 SSE 功能(代码示例)

《SpringBoot3.4.3基于SpringWebFlux实现SSE功能(代码示例)》SpringBoot3.4.3结合SpringWebFlux实现SSE功能,为实时数据推送提供... 目录1. SSE 简介1.1 什么是 SSE?1.2 SSE 的优点1.3 适用场景2. Spring WebFlu

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4