用进化算法来优化SVM的参数C和Gamma——利用SCOOP库进行分布式加速计算

本文主要是介绍用进化算法来优化SVM的参数C和Gamma——利用SCOOP库进行分布式加速计算,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

该案例展示了如何利用SCOOP库进行分布式加速计算Geatpy进化算法程序,
本案例和soea_demo6类似,同样是用进化算法来优化SVM的参数C和Gamma,
不同的是,本案例选用更庞大的数据集,使得每次训练SVM模型时耗时更高,从而更适合采用分布式加速计算。
该数据集存放在同目录下的Data_User_Modeling_Dataset_Hamdi Tolga KAHRAMAN.xls中,
有关该数据集的详细描述详见http://archive.ics.uci.edu/ml/datasets/User+Knowledge+Modeling。
在执行本案例前,需要确保正确安装sklearn以及SCOOP,以保证SVM和SCOOP部分的代码能够正常执行。
SCOOP安装方法:控制台执行命令pip install scoop
分布式加速计算注意事项:
1.当aimFunc()函数十分耗时,比如无法矩阵化计算、或者是计算单个个体的目标函数值就需要很长时间时,适合采用分布式计算,否则贸然采用分布式计算反而会大大降低性能。
2.分布式执行方法:python -m scoop -n 10 main.py 其中10表示把计算任务分发给10个workers。非分布式执行方法:python main.py
# -*- coding: utf-8 -*-
import numpy as np
import xlrd
import geatpy as ea
from sklearn import svm
from sklearn import preprocessing
from sklearn.model_selection import cross_val_score
from scoop import futures"""
该案例展示了如何利用SCOOP库进行分布式加速计算Geatpy进化算法程序,
本案例和soea_demo6类似,同样是用进化算法来优化SVM的参数C和Gamma,
不同的是,本案例选用更庞大的数据集,使得每次训练SVM模型时耗时更高,从而更适合采用分布式加速计算。
该数据集存放在同目录下的Data_User_Modeling_Dataset_Hamdi Tolga KAHRAMAN.xls中,
有关该数据集的详细描述详见http://archive.ics.uci.edu/ml/datasets/User+Knowledge+Modeling。
在执行本案例前,需要确保正确安装sklearn以及SCOOP,以保证SVM和SCOOP部分的代码能够正常执行。
SCOOP安装方法:控制台执行命令pip install scoop
分布式加速计算注意事项:
1.当aimFunc()函数十分耗时,比如无法矩阵化计算、或者是计算单个个体的目标函数值就需要很长时间时,适合采用分布式计算,否则贸然采用分布式计算反而会大大降低性能。
2.分布式执行方法:python -m scoop -n 10 main.py 其中10表示把计算任务分发给10个workers。非分布式执行方法:python main.py
"""class MyProblem(ea.Problem): # 继承Problem父类def __init__(self):name = 'MyProblem' # 初始化name(函数名称,可以随意设置)M = 1 # 初始化M(目标维数)maxormins = [-1] # 初始化maxormins(目标最小最大化标记列表,1:最小化该目标;-1:最大化该目标)Dim = 2 # 初始化Dim(决策变量维数)varTypes = [0, 0] # 初始化varTypes(决策变量的类型,元素为0表示对应的变量是连续的;1表示是离散的)lb = [2**(-8), 2**(-8)] # 决策变量下界ub = [2**8, 1] # 决策变量上界lbin = [1] * Dim # 决策变量下边界(0表示不包含该变量的下边界,1表示包含)ubin = [1] * Dim # 决策变量上边界(0表示不包含该变量的上边界,1表示包含)# 调用父类构造方法完成实例化ea.Problem.__init__(self, name, M, maxormins, Dim, varTypes, lb, ub, lbin, ubin)# 目标函数计算中用到的一些数据workbook=xlrd.open_workbook("Data_User_Modeling_Dataset_Hamdi Tolga KAHRAMAN.xls") # 打开文件,获取excel文件的workbook(工作簿)对象worksheet=workbook.sheet_by_name("Training_Data") # 通过sheet名获得sheet对象self.data = np.vstack([worksheet.col_values(0)[1:],worksheet.col_values(1)[1:],worksheet.col_values(2)[1:],worksheet.col_values(3)[1:],worksheet.col_values(4)[1:]]).T # 获取特征数据self.data = preprocessing.scale(self.data) # 归一化特征数据self.dataTarget = worksheet.col_values(5)[1:] # 获取标签数据def aimFunc(self, pop): # 目标函数Vars = pop.Phen # 得到决策变量矩阵args = list(zip(list(range(pop.sizes)), [Vars] * pop.sizes, [self.data] * pop.sizes, [self.dataTarget] * pop.sizes))pop.ObjV = np.array(list(futures.map(subAimFunc, args))) # 调用SCOOP的map函数进行分布式计算,并构造种群所有个体的目标函数值矩阵ObjVdef test(self, C, G): # 代入优化后的C、Gamma对测试集进行检验# 读取测试集数据workbook=xlrd.open_workbook("Data_User_Modeling_Dataset_Hamdi Tolga KAHRAMAN.xls") # 打开文件,获取excel文件的workbook(工作簿)对象worksheet=workbook.sheet_by_name("Test_Data") # 通过sheet名获得sheet对象data_test = np.vstack([worksheet.col_values(0)[1:],worksheet.col_values(1)[1:],worksheet.col_values(2)[1:],worksheet.col_values(3)[1:],worksheet.col_values(4)[1:]]).T # 获取特征数据data_test = preprocessing.scale(data_test) # 归一化特征数据dataTarget_test = worksheet.col_values(5)[1:] # 获取标签数据svc = svm.SVC(C=C, kernel='rbf', gamma=G).fit(self.data, self.dataTarget) # 创建分类器对象并用训练集的数据拟合分类器模型dataTarget_predict = svc.predict(data_test) # 采用训练好的分类器对象对测试集数据进行预测print("测试集数据分类正确率 = %s%%"%(len(np.where(dataTarget_predict == dataTarget_test)[0]) / len(dataTarget_test) * 100))def subAimFunc(args): # 单独计算单个个体的目标函数值i = args[0]Vars = args[1]data = args[2]dataTarget = args[3]C = Vars[i, 0]G = Vars[i, 1]svc = svm.SVC(C=C, kernel='rbf', gamma=G).fit(data, dataTarget) # 创建分类器对象并用训练集的数据拟合分类器模型scores = cross_val_score(svc, data, dataTarget, cv=20) # 计算交叉验证的得分ObjV_i = [scores.mean()] # 把交叉验证的平均得分作为目标函数值return ObjV_i

源代码

这篇关于用进化算法来优化SVM的参数C和Gamma——利用SCOOP库进行分布式加速计算的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/515013

相关文章

Python实现精确小数计算的完全指南

《Python实现精确小数计算的完全指南》在金融计算、科学实验和工程领域,浮点数精度问题一直是开发者面临的重大挑战,本文将深入解析Python精确小数计算技术体系,感兴趣的小伙伴可以了解一下... 目录引言:小数精度问题的核心挑战一、浮点数精度问题分析1.1 浮点数精度陷阱1.2 浮点数误差来源二、基础解决

SpringBoot 获取请求参数的常用注解及用法

《SpringBoot获取请求参数的常用注解及用法》SpringBoot通过@RequestParam、@PathVariable等注解支持从HTTP请求中获取参数,涵盖查询、路径、请求体、头、C... 目录SpringBoot 提供了多种注解来方便地从 HTTP 请求中获取参数以下是主要的注解及其用法:1

HTTP 与 SpringBoot 参数提交与接收协议方式

《HTTP与SpringBoot参数提交与接收协议方式》HTTP参数提交方式包括URL查询、表单、JSON/XML、路径变量、头部、Cookie、GraphQL、WebSocket和SSE,依据... 目录HTTP 协议支持多种参数提交方式,主要取决于请求方法(Method)和内容类型(Content-Ty

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

Python实战之SEO优化自动化工具开发指南

《Python实战之SEO优化自动化工具开发指南》在数字化营销时代,搜索引擎优化(SEO)已成为网站获取流量的重要手段,本文将带您使用Python开发一套完整的SEO自动化工具,需要的可以了解下... 目录前言项目概述技术栈选择核心模块实现1. 关键词研究模块2. 网站技术seo检测模块3. 内容优化分析模

Java实现复杂查询优化的7个技巧小结

《Java实现复杂查询优化的7个技巧小结》在Java项目中,复杂查询是开发者面临的“硬骨头”,本文将通过7个实战技巧,结合代码示例和性能对比,手把手教你如何让复杂查询变得优雅,大家可以根据需求进行选择... 目录一、复杂查询的痛点:为何你的代码“又臭又长”1.1冗余变量与中间状态1.2重复查询与性能陷阱1.

Python内存优化的实战技巧分享

《Python内存优化的实战技巧分享》Python作为一门解释型语言,虽然在开发效率上有着显著优势,但在执行效率方面往往被诟病,然而,通过合理的内存优化策略,我们可以让Python程序的运行速度提升3... 目录前言python内存管理机制引用计数机制垃圾回收机制内存泄漏的常见原因1. 循环引用2. 全局变

Nginx中配置使用非默认80端口进行服务的完整指南

《Nginx中配置使用非默认80端口进行服务的完整指南》在实际生产环境中,我们经常需要将Nginx配置在其他端口上运行,本文将详细介绍如何在Nginx中配置使用非默认端口进行服务,希望对大家有所帮助... 目录一、为什么需要使用非默认端口二、配置Nginx使用非默认端口的基本方法2.1 修改listen指令

Redis实现分布式锁全过程

《Redis实现分布式锁全过程》文章介绍Redis实现分布式锁的方法,包括使用SETNX和EXPIRE命令确保互斥性与防死锁,Redisson客户端提供的便捷接口,以及Redlock算法通过多节点共识... 目录Redis实现分布式锁1. 分布式锁的基本原理2. 使用 Redis 实现分布式锁2.1 获取锁

python中的显式声明类型参数使用方式

《python中的显式声明类型参数使用方式》文章探讨了Python3.10+版本中类型注解的使用,指出FastAPI官方示例强调显式声明参数类型,通过|操作符替代Union/Optional,可提升代... 目录背景python函数显式声明的类型汇总基本类型集合类型Optional and Union(py