基于Levenberg-Marquardt算法改进的BP神经网络-公式推导及应用

本文主要是介绍基于Levenberg-Marquardt算法改进的BP神经网络-公式推导及应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Levenberg-Marquardt算法是一种用于非线性最小化问题的优化算法,通常用于训练神经网络。它结合了梯度下降和高斯-牛顿方法的特点,旨在提高收敛速度和稳定性。下面是基于Levenberg-Marquardt算法改进的反向传播(BP)神经网络的详细推导过程。

考虑一个具有L层的前馈神经网络,其中第l层(l=1,2,...,L)有nl个神经元。令θ表示所有权重和偏置参数的集合。网络的输入为x,输出为y,训练数据集包含N个样本{(xi, yi)}。

1. 网络结构和符号定义:

   - 输入层:$a^{(1)} = x$
   - 第l层的激活:$z^{(l+1)} = \theta^{(l)}a^{(l)}$
   - 第l层的输出:$a^{(l+1)} = g(z^{(l+1)})$
   - 损失函数:$J(\theta) = \frac{1}{2}\sum_{i=1}^{N}\|y_i - a^{(L)}_i\|^2$

2. 反向传播:

   对于Levenberg-Marquardt算法,我们需要计算损失函数对参数的梯度。首先,使用反向传播计算梯度。

   - 计算输出层的误差项:
     $\delta^{(L)} = \nabla_{a^{(L)}}J \odot g'(z^{(L+1)})$

   - 计算隐藏层的误差项:
     $\delta^{(l)} = (\theta^{(l)})^T \delta^{(l+1)} \odot g'(z^{(l+1)})$

3. Levenberg-Marquardt算法的更新规则:

   Levenberg-Marquardt算法的更新规则基于牛顿方法,但引入了一个调整因子(damping parameter)λ。

   - 计算Hessian矩阵H(二阶偏导数):
     $H = \nabla_{\theta}\nabla_{\theta}J = \sum_{i=1}^{N}\nabla_{\theta}\delta_i \nabla_{\theta}\delta_i^T$

   - 计算梯度g:
     $g = \nabla_{\theta}J = \sum_{i=1}^{N}\nabla_{\theta}\delta_i$

   - 计算Levenberg-Marquardt矩阵:
     $L = H + \lambda I$

   - 使用Levenberg-Marquardt矩阵求解参数更新:
     $\Delta\theta = -L^{-1}g$

   - 更新参数:
     $\theta \leftarrow \theta + \Delta\theta$

   - 更新λ:
     $\lambda \leftarrow \lambda \times \text{adjustment factor}$

   这里,调整因子通常根据网络性能进行动态调整,以确保算法的稳定性和收敛性。

4. 迭代更新:

   通过反复执行步骤2和步骤3,直到满足停止条件(如达到最大迭代次数或达到一定的精度)为止。

5. 代码实现:

下面是一个使用PyTorch实现基于Levenberg-Marquardt算法改进的BP神经网络的简单示例:

import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np# 生成模拟数据
np.random.seed(42)
X = np.random.rand(100, 1).astype(np.float32)
Y = 3 * X + 1 + 0.1 * np.random.randn(100, 1).astype(np.float32)# 转换为PyTorch张量
X_tensor = torch.from_numpy(X)
Y_tensor = torch.from_numpy(Y)# 定义神经网络模型
class LinearRegression(nn.Module):def __init__(self):super(LinearRegression, self).__init__()self.linear = nn.Linear(1, 1, bias=True)def forward(self, x):return self.linear(x)# 初始化模型、损失函数和优化器
model = LinearRegression()
criterion = nn.MSELoss()
optimizer = optim.SGD(model.parameters(), lr=0.01)# 定义Levenberg-Marquardt算法的训练步骤
def train_step(X, Y, model, criterion, optimizer):model.train()optimizer.zero_grad()predictions = model(X)loss = criterion(predictions, Y)# 计算梯度和Hessian矩阵gradients = torch.autograd.grad(loss, model.parameters(), create_graph=True)hessian = torch.autograd.grad(gradients, model.parameters(), create_graph=True)# 调整因子damping = 0.01l_matrix = [h + damping * torch.eye(h.size(0), device=h.device) for h in hessian]# 使用Levenberg-Marquardt矩阵求解参数更新update_direction = torch.linalg.solve(l_matrix, gradients)# 更新参数for param, update in zip(model.parameters(), update_direction):param.data -= update.datareturn loss.item()# 训练模型
epochs = 100
for epoch in range(epochs):loss = train_step(X_tensor, Y_tensor, model, criterion, optimizer)print(f'Epoch {epoch+1}/{epochs}, Loss: {loss}')# 打印训练后的权重和偏置
print('Trained weights:', model.linear.weight.data.item())
print('Trained bias:', model.linear.bias.data.item())

这个示例中,我们首先定义了一个简单的线性回归模型,并使用均方误差作为损失函数。在`train_step`函数中,我们计算了梯度和Hessian矩阵,并使用Levenberg-Marquardt算法进行参数更新。在每个训练步骤中,通过反复执行`train_step`函数,模型的参数将逐渐收敛到最优值。

在实际情况中,基于Levenberg-Marquardt算法的神经网络训练可能不是最佳选择,因为该算法相对较复杂,而深度学习框架通常使用更适合大规模数据集的优化算法。不过,为了演示,你可以使用基于Levenberg-Marquardt算法的训练方法来训练一个简单的神经网络模型以在MNIST数据集上进行数字识别。以下是一个PyTorch示例:

import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
import matplotlib.pyplot as plt# 加载MNIST数据集
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))])
train_dataset = datasets.MNIST('./data', train=True, download=True, transform=transform)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True)# 定义神经网络模型
class SimpleNN(nn.Module):def __init__(self):super(SimpleNN, self).__init__()self.flatten = nn.Flatten()self.linear1 = nn.Linear(28 * 28, 128)self.relu = nn.ReLU()self.linear2 = nn.Linear(128, 10)def forward(self, x):x = self.flatten(x)x = self.linear1(x)x = self.relu(x)x = self.linear2(x)return x# 定义Levenberg-Marquardt算法的训练步骤
def train_step(X, Y, model, criterion, optimizer):model.train()optimizer.zero_grad()predictions = model(X)loss = criterion(predictions, Y)# 计算梯度和Hessian矩阵gradients = torch.autograd.grad(loss, model.parameters(), create_graph=True)hessian = torch.autograd.grad(gradients, model.parameters(), create_graph=True)# 调整因子damping = 0.01l_matrix = [h + damping * torch.eye(h.size(0), device=h.device) for h in hessian]# 使用Levenberg-Marquardt矩阵求解参数更新update_direction = torch.linalg.solve(l_matrix, gradients)# 更新参数for param, update in zip(model.parameters(), update_direction):param.data -= update.datareturn loss.item()# 初始化模型、损失函数和优化器
model = SimpleNN()
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01)# 训练模型
epochs = 5
for epoch in range(epochs):for data, target in train_loader:optimizer.zero_grad()output = model(data)loss = criterion(output, target)loss.backward()optimizer.step()print(f'Epoch {epoch+1}/{epochs}, Loss: {loss.item()}')# 可视化模型预测结果
with torch.no_grad():model.eval()test_loader = torch.utils.data.DataLoader(datasets.MNIST('./data', train=False, download=True, transform=transform), batch_size=1000, shuffle=True)images, labels = next(iter(test_loader))predictions = model(images)predicted_labels = torch.argmax(predictions, dim=1)# 显示前25个测试样本及其预测标签plt.figure(figsize=(10, 10))for i in range(25):plt.subplot(5, 5, i + 1)plt.imshow(images[i].squeeze(), cmap='gray')plt.title(f'Predicted: {predicted_labels[i]}, Actual: {labels[i]}')plt.axis('off')plt.show()

请注意,这只是一个演示性质的例子,使用Levenberg-Marquardt算法来训练神经网络可能不如其他现代优化算法(如Adam、SGD等)效果好。深度学习领域通常使用梯度下降的变体来训练神经网络。

这篇关于基于Levenberg-Marquardt算法改进的BP神经网络-公式推导及应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/511020

相关文章

在Ubuntu上部署SpringBoot应用的操作步骤

《在Ubuntu上部署SpringBoot应用的操作步骤》随着云计算和容器化技术的普及,Linux服务器已成为部署Web应用程序的主流平台之一,Java作为一种跨平台的编程语言,具有广泛的应用场景,本... 目录一、部署准备二、安装 Java 环境1. 安装 JDK2. 验证 Java 安装三、安装 mys

Python中构建终端应用界面利器Blessed模块的使用

《Python中构建终端应用界面利器Blessed模块的使用》Blessed库作为一个轻量级且功能强大的解决方案,开始在开发者中赢得口碑,今天,我们就一起来探索一下它是如何让终端UI开发变得轻松而高... 目录一、安装与配置:简单、快速、无障碍二、基本功能:从彩色文本到动态交互1. 显示基本内容2. 创建链

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

java中VO PO DTO POJO BO DO对象的应用场景及使用方式

《java中VOPODTOPOJOBODO对象的应用场景及使用方式》文章介绍了Java开发中常用的几种对象类型及其应用场景,包括VO、PO、DTO、POJO、BO和DO等,并通过示例说明了它... 目录Java中VO PO DTO POJO BO DO对象的应用VO (View Object) - 视图对象

Go信号处理如何优雅地关闭你的应用

《Go信号处理如何优雅地关闭你的应用》Go中的优雅关闭机制使得在应用程序接收到终止信号时,能够进行平滑的资源清理,通过使用context来管理goroutine的生命周期,结合signal... 目录1. 什么是信号处理?2. 如何优雅地关闭 Go 应用?3. 代码实现3.1 基本的信号捕获和优雅关闭3.2

正则表达式高级应用与性能优化记录

《正则表达式高级应用与性能优化记录》本文介绍了正则表达式的高级应用和性能优化技巧,包括文本拆分、合并、XML/HTML解析、数据分析、以及性能优化方法,通过这些技巧,可以更高效地利用正则表达式进行复杂... 目录第6章:正则表达式的高级应用6.1 模式匹配与文本处理6.1.1 文本拆分6.1.2 文本合并6

python中的与时间相关的模块应用场景分析

《python中的与时间相关的模块应用场景分析》本文介绍了Python中与时间相关的几个重要模块:`time`、`datetime`、`calendar`、`timeit`、`pytz`和`dateu... 目录1. time 模块2. datetime 模块3. calendar 模块4. timeit

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,