基于Levenberg-Marquardt算法改进的BP神经网络-公式推导及应用

本文主要是介绍基于Levenberg-Marquardt算法改进的BP神经网络-公式推导及应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Levenberg-Marquardt算法是一种用于非线性最小化问题的优化算法,通常用于训练神经网络。它结合了梯度下降和高斯-牛顿方法的特点,旨在提高收敛速度和稳定性。下面是基于Levenberg-Marquardt算法改进的反向传播(BP)神经网络的详细推导过程。

考虑一个具有L层的前馈神经网络,其中第l层(l=1,2,...,L)有nl个神经元。令θ表示所有权重和偏置参数的集合。网络的输入为x,输出为y,训练数据集包含N个样本{(xi, yi)}。

1. 网络结构和符号定义:

   - 输入层:$a^{(1)} = x$
   - 第l层的激活:$z^{(l+1)} = \theta^{(l)}a^{(l)}$
   - 第l层的输出:$a^{(l+1)} = g(z^{(l+1)})$
   - 损失函数:$J(\theta) = \frac{1}{2}\sum_{i=1}^{N}\|y_i - a^{(L)}_i\|^2$

2. 反向传播:

   对于Levenberg-Marquardt算法,我们需要计算损失函数对参数的梯度。首先,使用反向传播计算梯度。

   - 计算输出层的误差项:
     $\delta^{(L)} = \nabla_{a^{(L)}}J \odot g'(z^{(L+1)})$

   - 计算隐藏层的误差项:
     $\delta^{(l)} = (\theta^{(l)})^T \delta^{(l+1)} \odot g'(z^{(l+1)})$

3. Levenberg-Marquardt算法的更新规则:

   Levenberg-Marquardt算法的更新规则基于牛顿方法,但引入了一个调整因子(damping parameter)λ。

   - 计算Hessian矩阵H(二阶偏导数):
     $H = \nabla_{\theta}\nabla_{\theta}J = \sum_{i=1}^{N}\nabla_{\theta}\delta_i \nabla_{\theta}\delta_i^T$

   - 计算梯度g:
     $g = \nabla_{\theta}J = \sum_{i=1}^{N}\nabla_{\theta}\delta_i$

   - 计算Levenberg-Marquardt矩阵:
     $L = H + \lambda I$

   - 使用Levenberg-Marquardt矩阵求解参数更新:
     $\Delta\theta = -L^{-1}g$

   - 更新参数:
     $\theta \leftarrow \theta + \Delta\theta$

   - 更新λ:
     $\lambda \leftarrow \lambda \times \text{adjustment factor}$

   这里,调整因子通常根据网络性能进行动态调整,以确保算法的稳定性和收敛性。

4. 迭代更新:

   通过反复执行步骤2和步骤3,直到满足停止条件(如达到最大迭代次数或达到一定的精度)为止。

5. 代码实现:

下面是一个使用PyTorch实现基于Levenberg-Marquardt算法改进的BP神经网络的简单示例:

import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np# 生成模拟数据
np.random.seed(42)
X = np.random.rand(100, 1).astype(np.float32)
Y = 3 * X + 1 + 0.1 * np.random.randn(100, 1).astype(np.float32)# 转换为PyTorch张量
X_tensor = torch.from_numpy(X)
Y_tensor = torch.from_numpy(Y)# 定义神经网络模型
class LinearRegression(nn.Module):def __init__(self):super(LinearRegression, self).__init__()self.linear = nn.Linear(1, 1, bias=True)def forward(self, x):return self.linear(x)# 初始化模型、损失函数和优化器
model = LinearRegression()
criterion = nn.MSELoss()
optimizer = optim.SGD(model.parameters(), lr=0.01)# 定义Levenberg-Marquardt算法的训练步骤
def train_step(X, Y, model, criterion, optimizer):model.train()optimizer.zero_grad()predictions = model(X)loss = criterion(predictions, Y)# 计算梯度和Hessian矩阵gradients = torch.autograd.grad(loss, model.parameters(), create_graph=True)hessian = torch.autograd.grad(gradients, model.parameters(), create_graph=True)# 调整因子damping = 0.01l_matrix = [h + damping * torch.eye(h.size(0), device=h.device) for h in hessian]# 使用Levenberg-Marquardt矩阵求解参数更新update_direction = torch.linalg.solve(l_matrix, gradients)# 更新参数for param, update in zip(model.parameters(), update_direction):param.data -= update.datareturn loss.item()# 训练模型
epochs = 100
for epoch in range(epochs):loss = train_step(X_tensor, Y_tensor, model, criterion, optimizer)print(f'Epoch {epoch+1}/{epochs}, Loss: {loss}')# 打印训练后的权重和偏置
print('Trained weights:', model.linear.weight.data.item())
print('Trained bias:', model.linear.bias.data.item())

这个示例中,我们首先定义了一个简单的线性回归模型,并使用均方误差作为损失函数。在`train_step`函数中,我们计算了梯度和Hessian矩阵,并使用Levenberg-Marquardt算法进行参数更新。在每个训练步骤中,通过反复执行`train_step`函数,模型的参数将逐渐收敛到最优值。

在实际情况中,基于Levenberg-Marquardt算法的神经网络训练可能不是最佳选择,因为该算法相对较复杂,而深度学习框架通常使用更适合大规模数据集的优化算法。不过,为了演示,你可以使用基于Levenberg-Marquardt算法的训练方法来训练一个简单的神经网络模型以在MNIST数据集上进行数字识别。以下是一个PyTorch示例:

import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
import matplotlib.pyplot as plt# 加载MNIST数据集
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))])
train_dataset = datasets.MNIST('./data', train=True, download=True, transform=transform)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True)# 定义神经网络模型
class SimpleNN(nn.Module):def __init__(self):super(SimpleNN, self).__init__()self.flatten = nn.Flatten()self.linear1 = nn.Linear(28 * 28, 128)self.relu = nn.ReLU()self.linear2 = nn.Linear(128, 10)def forward(self, x):x = self.flatten(x)x = self.linear1(x)x = self.relu(x)x = self.linear2(x)return x# 定义Levenberg-Marquardt算法的训练步骤
def train_step(X, Y, model, criterion, optimizer):model.train()optimizer.zero_grad()predictions = model(X)loss = criterion(predictions, Y)# 计算梯度和Hessian矩阵gradients = torch.autograd.grad(loss, model.parameters(), create_graph=True)hessian = torch.autograd.grad(gradients, model.parameters(), create_graph=True)# 调整因子damping = 0.01l_matrix = [h + damping * torch.eye(h.size(0), device=h.device) for h in hessian]# 使用Levenberg-Marquardt矩阵求解参数更新update_direction = torch.linalg.solve(l_matrix, gradients)# 更新参数for param, update in zip(model.parameters(), update_direction):param.data -= update.datareturn loss.item()# 初始化模型、损失函数和优化器
model = SimpleNN()
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01)# 训练模型
epochs = 5
for epoch in range(epochs):for data, target in train_loader:optimizer.zero_grad()output = model(data)loss = criterion(output, target)loss.backward()optimizer.step()print(f'Epoch {epoch+1}/{epochs}, Loss: {loss.item()}')# 可视化模型预测结果
with torch.no_grad():model.eval()test_loader = torch.utils.data.DataLoader(datasets.MNIST('./data', train=False, download=True, transform=transform), batch_size=1000, shuffle=True)images, labels = next(iter(test_loader))predictions = model(images)predicted_labels = torch.argmax(predictions, dim=1)# 显示前25个测试样本及其预测标签plt.figure(figsize=(10, 10))for i in range(25):plt.subplot(5, 5, i + 1)plt.imshow(images[i].squeeze(), cmap='gray')plt.title(f'Predicted: {predicted_labels[i]}, Actual: {labels[i]}')plt.axis('off')plt.show()

请注意,这只是一个演示性质的例子,使用Levenberg-Marquardt算法来训练神经网络可能不如其他现代优化算法(如Adam、SGD等)效果好。深度学习领域通常使用梯度下降的变体来训练神经网络。

这篇关于基于Levenberg-Marquardt算法改进的BP神经网络-公式推导及应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/511020

相关文章

PHP应用中处理限流和API节流的最佳实践

《PHP应用中处理限流和API节流的最佳实践》限流和API节流对于确保Web应用程序的可靠性、安全性和可扩展性至关重要,本文将详细介绍PHP应用中处理限流和API节流的最佳实践,下面就来和小编一起学习... 目录限流的重要性在 php 中实施限流的最佳实践使用集中式存储进行状态管理(如 Redis)采用滑动

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

PostgreSQL简介及实战应用

《PostgreSQL简介及实战应用》PostgreSQL是一种功能强大的开源关系型数据库管理系统,以其稳定性、高性能、扩展性和复杂查询能力在众多项目中得到广泛应用,本文将从基础概念讲起,逐步深入到高... 目录前言1. PostgreSQL基础1.1 PostgreSQL简介1.2 基础语法1.3 数据库

Python进阶之列表推导式的10个核心技巧

《Python进阶之列表推导式的10个核心技巧》在Python编程中,列表推导式(ListComprehension)是提升代码效率的瑞士军刀,本文将通过真实场景案例,揭示列表推导式的进阶用法,希望对... 目录一、基础语法重构:理解推导式的底层逻辑二、嵌套循环:破解多维数据处理难题三、条件表达式:实现分支

Python中的filter() 函数的工作原理及应用技巧

《Python中的filter()函数的工作原理及应用技巧》Python的filter()函数用于筛选序列元素,返回迭代器,适合函数式编程,相比列表推导式,内存更优,尤其适用于大数据集,结合lamb... 目录前言一、基本概念基本语法二、使用方式1. 使用 lambda 函数2. 使用普通函数3. 使用 N

Python中yield的用法和实际应用示例

《Python中yield的用法和实际应用示例》在Python中,yield关键字主要用于生成器函数(generatorfunctions)中,其目的是使函数能够像迭代器一样工作,即可以被遍历,但不会... 目录python中yield的用法详解一、引言二、yield的基本用法1、yield与生成器2、yi

Python多线程应用中的卡死问题优化方案指南

《Python多线程应用中的卡死问题优化方案指南》在利用Python语言开发某查询软件时,遇到了点击搜索按钮后软件卡死的问题,本文将简单分析一下出现的原因以及对应的优化方案,希望对大家有所帮助... 目录问题描述优化方案1. 网络请求优化2. 多线程架构优化3. 全局异常处理4. 配置管理优化优化效果1.

从基础到高阶详解Python多态实战应用指南

《从基础到高阶详解Python多态实战应用指南》这篇文章主要从基础到高阶为大家详细介绍Python中多态的相关应用与技巧,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、多态的本质:python的“鸭子类型”哲学二、多态的三大实战场景场景1:数据处理管道——统一处理不同数据格式

Java Stream 的 Collectors.toMap高级应用与最佳实践

《JavaStream的Collectors.toMap高级应用与最佳实践》文章讲解JavaStreamAPI中Collectors.toMap的使用,涵盖基础语法、键冲突处理、自定义Map... 目录一、基础用法回顾二、处理键冲突三、自定义 Map 实现类型四、处理 null 值五、复杂值类型转换六、处理

分布式锁在Spring Boot应用中的实现过程

《分布式锁在SpringBoot应用中的实现过程》文章介绍在SpringBoot中通过自定义Lock注解、LockAspect切面和RedisLockUtils工具类实现分布式锁,确保多实例并发操作... 目录Lock注解LockASPect切面RedisLockUtils工具类总结在现代微服务架构中,分布