[ROS] 多传感器卡尔曼融合框架 Ethzasl MSF Framework 编译与使用

本文主要是介绍[ROS] 多传感器卡尔曼融合框架 Ethzasl MSF Framework 编译与使用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

转载自:http://www.liuxiao.org/2016/07/ros-%E5%A4%9A%E4%BC%A0%E6%84%9F%E5%99%A8%E5%8D%A1%E5%B0%94%E6%9B%BC%E8%9E%8D%E5%90%88%E6%A1%86%E6%9E%B6-ethzasl-msf-framework-%E7%BC%96%E8%AF%91%E4%B8%8E%E4%BD%BF%E7%94%A8/

Home机器人ROS[ROS] 多传感器卡尔曼融合框架 Ethzasl MSF Framework 编译与使用

[ROS] 多传感器卡尔曼融合框架 Ethzasl MSF Framework 编译与使用

2016年7月26日

framesetup
多传感器融合是机器人导航上面一个非常基本的问题,通常在一个稳定可用的机器人系统中,会使用视觉(RGB或RGBD)、激光、IMU、马盘等一系列传感器的数据来最终输出一个稳定和不易丢失的姿态。Ethzasl MSF Framework 是一个机器人上面的多传感器融合框架,它使用了扩展卡尔曼的原理对多传感器进行融合。同时内部使用了很多工程上的 trick 解决多传感器的刷新率同步等问题,API 封装也相对简单,非常适合新手使用。

0、系统环境:
Ubuntu 14.04.3
ROS indigo

1、新建 MSF 工作目录:
在命令行执行如下命令:

mkdir -p MSF/src cd ./MSF/src catkin_init_workspace

1

2

3

mkdir -p MSF/src

cd ./MSF/src

catkin_init_workspace

退出 src 目录到 PATH_TO_MSF 根目录下,编译生成 ROS 工程文件:

cd .. catkin_make

1

2

cd ..

catkin_make

后面我们将这个新建的 MSF 路径称为 PATH_TO_MSF。

2、下载依赖库和 Ethzasl MSF Framework:
进入 PATH_TO_MSF/src 目录。

cd ./src

1

cd ./src

在此目录下载所有依赖库和 MSF 框架。

1)下载 glog:

git clone https://github.com/ethz-asl/glog_catkin.git

1

git clone https://github.com/ethz-asl/glog_catkin.git

2)下载 catkin_simple:

git clone https://github.com/catkin/catkin_simple.git

1

git clone https://github.com/catkin/catkin_simple.git

3)下载 asctec_mav_framework:

git clone https://github.com/ethz-asl/asctec_mav_framework.git

1

git clone https://github.com/ethz-asl/asctec_mav_framework.git

4)最后下载 Ethzasl MSF Framework 框架源代码:

git clone https://github.com/ethz-asl/ethzasl_msf.git

1

git clone https://github.com/ethz-asl/ethzasl_msf.git

3、编译 ROS 工程:
1)设置环境:
退出 src 目录,进入 PATH_TO_MSF 目录。在命令行中使用如下命令设置当前窗口的编译环境:

cd .. source devel/setup.bash

1

2

cd ..

source devel/setup.bash

2)再次编译整个工程:

catkin_make

1

catkin_make

中间可能会出现很多 warning,不过最后如果能够 100% 完成 built target 就成功了。

4、运行例子: MSF Viconpos Sensor Framework(使用 ROS Bag):
官方的例子使用了 Vicon 的设备进行 6ROF 的姿态估计,这个传感器很专业,但是我们一般没有。这里面我们使用官方提供的一个 bag 文件来进行模拟。

1)首先从 ros 网站下载 Vicon 的数据集:

这个数据包有 3.8 MB 左右,如果速度慢的可以下载我百度网盘的文件:
http://pan.baidu.com/s/1eShq7lg

我这里将其放置在 PATH_TO_MSF/data 目录下面。

2)修改 src/ethzasl_msf/msf_updates/viconpos_sensor_fix.yaml 文件:
将其中所有的:

/pose_sensor/pose_sensor/

1

/pose_sensor/pose_sensor/

替换为:

/msf_viconpos_sensor/pose_sensor/

1

/msf_viconpos_sensor/pose_sensor/

找到:

/pose_sensor/core/data_playback: false

1

/pose_sensor/core/data_playback: false

修改成:

/pose_sensor/core/data_playback: true

1

/pose_sensor/core/data_playback: true

3)修改 src/ethzasl_msf/msf_updates/launch/viconpos_sensor.launch 文件:
找到:

<rosparam file="$(find msf_updates)/viconpos_sensor_fix.yaml"/>

1

<rosparam file="$(find msf_updates)/viconpos_sensor_fix.yaml"/>

在这一行的前面加入两行 remap 操作,将传感器的 topic 与引擎的 topic 对应上:

<remap from="/msf_core/imu_state_input" to="/auk/fcu/imu" /> <remap from="msf_updates/transform_input" to="/vicon/auk/auk" />

1

2

<remap from="/msf_core/imu_state_input" to="/auk/fcu/imu"  />

<remap from="msf_updates/transform_input" to="/vicon/auk/auk" />

找到:

</node>

1

</node>

在其之后添加(这一步是初始化卡尔曼滤波器的,非常重要):

<node pkg="rosservice" type="rosservice" name="initialize" args="call --wait /msf_viconpos_sensor/pose_sensor/initialize_msf_scale 1"/>

1

<node pkg="rosservice" type="rosservice" name="initialize" args="call --wait /msf_viconpos_sensor/pose_sensor/initialize_msf_scale 1"/>

4)启动 ros 内核:
在一个窗口打开 roscore:

roscore

1

roscore

5)启动 MSF pose_sensor 节点:
快捷键 Ctrl + Alt + T 新建窗口,在 PATH_TO_MSF 目录下执行如下命令打开 pose_sensor 节点:

source devel/setup.bash roslaunch msf_updates viconpos_sensor.launch

1

2

source devel/setup.bash

roslaunch msf_updates viconpos_sensor.launch

6)打开动态配置参数功能(可选):
快捷键 Ctrl + Alt + T 新建窗口,执行如下命令打开动态配置功能:

rosrun rqt_reconfigure rqt_reconfigure

1

rosrun rqt_reconfigure rqt_reconfigure

可以看到如下窗口,在窗口中选中 msf_viconpos_sensor 下面菜单:
2016-07-25 14:53:50屏幕截图

在菜单中即可动态设置参数。

7)播放 vicon 的 bag 文件:
快捷键 Ctrl + Alt + T 新建窗口,在 PATH_TO_MSF 目录下执行如下命令:

rosbag play data/dataset.bag --pause -s 25

1

rosbag play data/dataset.bag --pause -s 25

这一行命令是暂停并从第 25s 后开始播放 bag 文件,文档中说这是为了等待 MAV 硬件系统站稳并处于非观察模式(不理解)。

总之,如果你准备好运行了,就可以开始点击空格键进行数据播放了,播放的数据大约剩余 86s 左右。

切换到 MSF pose_sensor 节点的窗口,如果你看到输出类似如下的窗口,就是表示系统运行成功了:
2016-07-26 11:42:07屏幕截图

5、数据模拟:
刚才跑成功了数据融合节点,但是并没有任何可视化的输出可以给我们看到。ethzasl msf 提供了一些脚本来进行数据模拟的功能,可以让我们更直观地看到结果。

1)修改 src/ethzasl_msf/msf_core/scripts/plot_relevant 文件:
找到:

rxplot msf_core/state_out/data[0]:data[1]:data[2] msf_core/state_out/data[3]:data[4]:data[5] -b $T -t "position & velocity" -l px,py,pz,vx,vy,vz & rxplot msf_core/state_out/data[13]:data[14]:data[15] msf_core/state_out/data[16] -b $T -t "acc bias & scale" -l x,y,z,L

1

2

rxplot msf_core/state_out/data[0]:data[1]:data[2] msf_core/state_out/data[3]:data[4]:data[5] -b $T -t "position & velocity" -l px,py,pz,vx,vy,vz &

rxplot msf_core/state_out/data[13]:data[14]:data[15] msf_core/state_out/data[16] -b $T -t "acc bias & scale" -l x,y,z,L

修改成:

rqt_plot msf_core/state_out/data[0]:data[1]:data[2] # rxplot msf_core/state_out/data[0]:data[1]:data[2] msf_core/state_out/data[3]:data[4]:data[5] -b $T -t "position & velocity" -l px,py,pz,vx,vy,vz & # rxplot msf_core/state_out/data[13]:data[14]:data[15] msf_core/state_out/data[16] -b $T -t "acc bias & scale" -l x,y,z,L

1

2

3

rqt_plot msf_core/state_out/data[0]:data[1]:data[2]

# rxplot msf_core/state_out/data[0]:data[1]:data[2] msf_core/state_out/data[3]:data[4]:data[5] -b $T -t "position & velocity" -l px,py,pz,vx,vy,vz &

# rxplot msf_core/state_out/data[13]:data[14]:data[15] msf_core/state_out/data[16] -b $T -t "acc bias & scale" -l x,y,z,L

2)启动 plot_relevant 脚本:
快捷键 Ctrl + Alt + T 新建窗口,在 PATH_TO_MSF 目录下执行如下命令打开 plot_relevant 脚本:

source devel/setup.bash rosrun msf_core plot_relevant

1

2

source devel/setup.bash

rosrun msf_core plot_relevant

另外也可以直接在命令行运行:

rqt_plot msf_core/state_out/data[0]:data[1]:data[2]

1

rqt_plot msf_core/state_out/data[0]:data[1]:data[2]

如果一切正常,即可看到如下曲线绘制,这样就表示成功运行起来了:

2016-07-26 11:07:30屏幕截图

参考文献:
[1] http://wiki.ros.org/ethzasl_sensor_fusion/Tutorials/Introductory%20Tutorial%20for%20Multi-Sensor%20Fusion%20Framework

这篇关于[ROS] 多传感器卡尔曼融合框架 Ethzasl MSF Framework 编译与使用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/507064

相关文章

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

Java中String字符串使用避坑指南

《Java中String字符串使用避坑指南》Java中的String字符串是我们日常编程中用得最多的类之一,看似简单的String使用,却隐藏着不少“坑”,如果不注意,可能会导致性能问题、意外的错误容... 目录8个避坑点如下:1. 字符串的不可变性:每次修改都创建新对象2. 使用 == 比较字符串,陷阱满

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

IDEA编译报错“java: 常量字符串过长”的原因及解决方法

《IDEA编译报错“java:常量字符串过长”的原因及解决方法》今天在开发过程中,由于尝试将一个文件的Base64字符串设置为常量,结果导致IDEA编译的时候出现了如下报错java:常量字符串过长,... 目录一、问题描述二、问题原因2.1 理论角度2.2 源码角度三、解决方案解决方案①:StringBui

Linux使用nload监控网络流量的方法

《Linux使用nload监控网络流量的方法》Linux中的nload命令是一个用于实时监控网络流量的工具,它提供了传入和传出流量的可视化表示,帮助用户一目了然地了解网络活动,本文给大家介绍了Linu... 目录简介安装示例用法基础用法指定网络接口限制显示特定流量类型指定刷新率设置流量速率的显示单位监控多个

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

C++ Primer 多维数组的使用

《C++Primer多维数组的使用》本文主要介绍了多维数组在C++语言中的定义、初始化、下标引用以及使用范围for语句处理多维数组的方法,具有一定的参考价值,感兴趣的可以了解一下... 目录多维数组多维数组的初始化多维数组的下标引用使用范围for语句处理多维数组指针和多维数组多维数组严格来说,C++语言没