[原创][R语言]股票分析实战[2]:周级别涨幅趋势的相关性

2023-12-18 02:28

本文主要是介绍[原创][R语言]股票分析实战[2]:周级别涨幅趋势的相关性,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

[简介]
常用网名: 猪头三
出生日期: 1981.XX.XX
QQ联系: 643439947
个人网站: 80x86汇编小站 https://www.x86asm.org
编程生涯: 2001年~至今[共22年]
职业生涯: 20年
开发语言: C/C++、80x86ASM、PHP、Perl、Objective-C、Object Pascal、C#、Python
开发工具: Visual Studio、Delphi、XCode、Eclipse、C++ Builder
技能种类: 逆向 驱动 磁盘 文件
研发领域: Windows应用软件安全/Windows系统内核安全/Windows系统磁盘数据安全/macOS应用软件安全
项目经历: 磁盘性能优化/文件系统数据恢复/文件信息采集/敏感文件监测跟踪/网络安全检测

[序言]
从上一章内容: [原创][R语言]股票分析实战[1]:周级别涨幅趋势的相关性-CSDN博客, 通过使用卡方独立检测chisq.test()发现"涨幅(RC)"和"跟周1~周5(DW)"的两者关系是独立的, 也就是说没有相互影响的可能性. 那么这时候, 是不是要放弃了呢?其实数据分析工作, 还没做完, 不要忘记了, xtabs()函数生成的是频率表, 那么也就说除了"涨幅(RC)"和"周1~周5(DW)"这2个变量之外, 还有第3个变量, 那就是"频率(Freq)"

[继续探索"涨幅(RC)", "周1~周5(DW)", "频率(Freq)"的交叉关系]
要一次性分析这3个变量的交叉关系, 是否有内在的隐藏关系, 那么可以使用gmodels包中的CrossTable()函数, 查看"频率(Freq)"的"预期值"和"卡方贡献值", 通过这查看这2个数值, 可以观察出"频率(Freq)"与"涨幅(RC)", "频率(Freq)"与"周1~周5(DW)"的交叉关系.

library(gmodels)
CrossTable(stock_demo_rc_token$RC, stock_demo_rc_token$DW, expected = TRUE, prop.r = FALSE, prop.c = FALSE, prop.t = FALSE)

通过上面的代码, 就可以显示出"频率(Freq)"与"涨幅(RC)", "频率(Freq)"与"周1~周5(DW)"的交叉关系, 并且很容易看出异常值, 如下图说明:

1> 红圈表示: 实际频率 大于 预期频率 表示 正方向活跃
2> 绿圈表示: 实际频率 小于 预取频率 表示 反方向活跃
3> 红圈和绿圈 都有共同的特征: 卡方贡献值 都大于 1.0, 表示异动

那么从这3个描述在配合下图来看, 很明显周1~周5都有圈圈, 另外周3与周5有2个圈圈, 这种情况表明 "频率(Freq)" 与 "涨幅(RC)"和"周1~周5(DW)" 都有关系, 且还可以表示交易是否活跃的关系, 大家可要认真看如下的描述, 这是非常关键的.

1> 可以发现周1~周2的活跃度是在%6涨幅区间.
2> 可以发现周3~周5的活跃度是在7%涨幅以上区间, 甚至在周5, 10%涨幅的活跃度还不错, 但可惜是反方向活跃, 也就意味着是冲高出货.
3> 可以发现周3和周5, 比 周1, 周2, 周4 活跃. 因为周3和周5有2个圈圈.
4> 可以发现周1, 周2, 周4活跃度持平, 但是周4涨幅更大.
太令人兴奋了, 初步总结出一个规律: 周3, 周4, 周5的交易比周1, 周2活跃. (但别高兴, 虽然从数据看出了一点蛛丝马迹, 但是还需要继续分析, "频率(Freq)"与"涨幅(RC)", "频率(Freq)"与"周1~周5(DW)" 哪个 关系最密切?)

["频率(Freq)"与"涨幅(RC)", "频率(Freq)"与"周1~周5(DW)" 哪个 关系最密切?]
为了研究这个关系, 我们需要为这3个变量生成一个一维的数据表, 包含3列分别是: RC, DW, Freq. 代码如下:

stock_demo_rc_table <- xtabs(~ RC + DW, stock_demo_rc_token) # 生成频率表
stock_demo_rc_table_Freq <- as.data.frame(stock_demo_rc_table) # 把频率表转换为具有3列的矩阵
stock_demo_rc_table_Freq$RC <- as.integer(stock_demo_rc_table_Freq$RC) # 把RC因子转换为int型
stock_demo_rc_table_Freq$DW <- as.integer(stock_demo_rc_table_Freq$DW) # 把DW因子转换为int型

通过执行上面的代码,可以得到如下的表格.


非常重要, 再次查看"频率(Freq)", "涨幅(RC)", "周1~周5(DW)"的交叉关系, 也就是相互关系. 执行如下并可以看到一些数据

cor(stock_demo_rc_table_Freq)

          RC             DW             Freq
RC    1.0000000 0.0000000 -0.1937841
DW    0.0000000 1.0000000  0.0504346
Freq -0.1937841 0.0504346  1.0000000

那么如何看上面的数据呢?下面认真看如下描述

1> "频率(Freq)"与"涨幅(RC)" 关系值是: 0.1937841 (这里先不考虑正负关系)
2>  "频率(Freq)"与"周1~周5(DW)" 关系值是: 0.0504346
3> "涨幅(RC)"与"周1~周5(DW)" 没有任何关系 (这点跟用chisq.test()验证是一样的结果)

很显然, "频率(Freq)"与"涨幅(RC)"关系最密切, 因为 0.1937841 > 0.0504346, 但是他们是负方向关系. 也就是说: 当"频率(Freq)"增大的时候, "涨幅(RC)"就会降低. 反之 "频率(Freq)"减小的时候, 涨幅(RC)"就会增大. 这就非常贴切, 非常符合现实中的炒股情况. 在大A股市场, 确实涨停的股票就很少, 也就是说涨停的频率不高或者很低. 那么另外看看"涨幅(RC)"与"周1~周5(DW)"的关系, 很显然2者关系很弱, 没有太大显著关系, 但还好有一点好的迹象, 那就是他们是正方向的, 也就是说随着时间周1到周5的移动,  "频率(Freq)"会慢慢增加. 这又是一个关键的信息了, 也就说股票交易的活跃度随着时间向周5推移, 活跃度缓慢提升. 

[最后总体概括: 用CrossTable()分析出来的数据 与 cor() 是一致的, 关键信息如下]

1> 根据CrossTable()分析出来的关键信息是: 周1~周2交易不活跃, 周3开始启动, 周5交易活跃度达到最强
3> 根据cor()分析出来的关键是: 交易活跃度随着时间推进, 而变强.

[结尾]
通过上面的分析, 都是通过数值来进行挖掘, 那么通过数值挖掘出来的规律, 用图形来显示, 是否也是一样的特征规律呢? 下一篇我们可以通过图形进一步观察已经分析出来的关键信息.

这篇关于[原创][R语言]股票分析实战[2]:周级别涨幅趋势的相关性的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/506704

相关文章

Spring Security基于数据库的ABAC属性权限模型实战开发教程

《SpringSecurity基于数据库的ABAC属性权限模型实战开发教程》:本文主要介绍SpringSecurity基于数据库的ABAC属性权限模型实战开发教程,本文给大家介绍的非常详细,对大... 目录1. 前言2. 权限决策依据RBACABAC综合对比3. 数据库表结构说明4. 实战开始5. MyBA

kotlin中const 和val的区别及使用场景分析

《kotlin中const和val的区别及使用场景分析》在Kotlin中,const和val都是用来声明常量的,但它们的使用场景和功能有所不同,下面给大家介绍kotlin中const和val的区别,... 目录kotlin中const 和val的区别1. val:2. const:二 代码示例1 Java

Go标准库常见错误分析和解决办法

《Go标准库常见错误分析和解决办法》Go语言的标准库为开发者提供了丰富且高效的工具,涵盖了从网络编程到文件操作等各个方面,然而,标准库虽好,使用不当却可能适得其反,正所谓工欲善其事,必先利其器,本文将... 目录1. 使用了错误的time.Duration2. time.After导致的内存泄漏3. jsO

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

Pandas使用SQLite3实战

《Pandas使用SQLite3实战》本文主要介绍了Pandas使用SQLite3实战,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录1 环境准备2 从 SQLite3VlfrWQzgt 读取数据到 DataFrame基础用法:读

Spring事务中@Transactional注解不生效的原因分析与解决

《Spring事务中@Transactional注解不生效的原因分析与解决》在Spring框架中,@Transactional注解是管理数据库事务的核心方式,本文将深入分析事务自调用的底层原理,解释为... 目录1. 引言2. 事务自调用问题重现2.1 示例代码2.2 问题现象3. 为什么事务自调用会失效3

找不到Anaconda prompt终端的原因分析及解决方案

《找不到Anacondaprompt终端的原因分析及解决方案》因为anaconda还没有初始化,在安装anaconda的过程中,有一行是否要添加anaconda到菜单目录中,由于没有勾选,导致没有菜... 目录问题原因问http://www.chinasem.cn题解决安装了 Anaconda 却找不到 An

Spring定时任务只执行一次的原因分析与解决方案

《Spring定时任务只执行一次的原因分析与解决方案》在使用Spring的@Scheduled定时任务时,你是否遇到过任务只执行一次,后续不再触发的情况?这种情况可能由多种原因导致,如未启用调度、线程... 目录1. 问题背景2. Spring定时任务的基本用法3. 为什么定时任务只执行一次?3.1 未启用

C语言中的数据类型强制转换

《C语言中的数据类型强制转换》:本文主要介绍C语言中的数据类型强制转换方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C语言数据类型强制转换自动转换强制转换类型总结C语言数据类型强制转换强制类型转换:是通过类型转换运算来实现的,主要的数据类型转换分为自动转换