深度学习笔记(十六)正则化(L2 dropout 数据扩增 Earlystopping)

本文主要是介绍深度学习笔记(十六)正则化(L2 dropout 数据扩增 Earlystopping),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

如果训练的模型过拟合,也就是高方差,我们首先想到的是正则化。高方差的解决方法有准备充足的数据,但是有时候我们无法找到足够的数据。下文详细说明正则化方法,包括L2正则化(菲罗贝尼乌斯)、dropout机制、数据扩增、Early stopping。

一、逻辑回归中的正则化

需要求得损失函数 J ( w , b ) J(w,b) J(w,b)的最小值,已知
J ( w , b ) = 1 m ∑ i = 1 m L ( y ^ ( i ) , y ( i ) ) J(w,b)=\frac{1}{m} \sum_{i=1}^m L(\widehat{y}^{(i)},y^{(i)}) J(w,b)=m1i=1mL(y (i),y(i))
在此基础上添加正则化参数 λ \lambda λ
J ( w , b ) = 1 m ∑ i = 1 m L ( y ^ ( i ) , y ( i ) ) + λ 2 m ∣ ∣ w ∣ ∣ 2 2 J(w,b)=\frac{1}{m} \sum_{i=1}^m L(\widehat{y}^{(i)},y^{(i)})+\frac{\lambda}{2m}||w||_2^2 J(w,b)=m1i=1mL(y (i),y(i))+2mλw22
其中 w w w的欧几里得范数的平方等于元素平方和
L 2 r e g u l a r i z a t i o n : ∣ ∣ w ∣ ∣ 2 2 = ∑ j = 1 n x w j 2 = w T w L2 regularization:||w||_2^2=\sum_{j=1}^{n_x} w_j^2=w^Tw L2regularization:w22=j=1nxwj2=wTw
为什么省略b,因为w通常是一个高维参数矢量,已经可以表达高方差的情况,b对参数影响并不显著。
L 1 : λ 2 m ∑ j = 1 n x ∣ w j ∣ = λ 2 m ∣ ∣ w ∣ ∣ 1 L1:\frac{\lambda}{2m} \sum_{j=1}^{n_x}|w_j|=\frac{\lambda}{2m}||w||_1 L1:2mλj=1nxwj=2mλw1
如果用L1正则化,W向量会很稀疏,会有很多0,有人说利于压缩模型,实际上并没有降低很多内存。我们更倾向于L2正则化。顺便说, λ \lambda λ这个参数也是一个超参数,需要尝试哪个取值才是最优取值,为了方便编程,在Python中 λ \lambda λ是保留字段,编程通常写作lambd作为正则化参数变量。

二、神经网络中的L2正则化

J ( w , b ) = 1 m ∑ i = 1 m L ( y ^ ( i ) , y ( i ) ) + λ 2 m ∑ l = 1 L ∣ ∣ w [ l ] ∣ ∣ F 2 J(w,b)=\frac{1}{m} \sum_{i=1}^m L(\widehat{y}^{(i)},y^{(i)})+\frac{\lambda}{2m}\sum_{l=1}^L ||w^{[l]}||_F^2 J(w,b)=m1i=1mL(y (i),y(i))+2mλl=1Lw[l]F2
其中,
∣ ∣ w [ l ] ∣ ∣ F 2 = ∑ i = 1 n [ l − 1 ] ∑ j = 1 n [ 1 ] ( w i j [ l ] ) 2 ||w^{[l]}||_F^2=\sum_{i=1}^{n^{[l-1]}}\sum_{j=1}^{n^{[1]}}(w_{ij}^{[l]})^2 w[l]F2=i=1n[l1]j=1n[1](wij[l])2
L2范数,按照惯例称之为:Frobenius 菲罗贝尼乌斯范数,即矩阵中所有元素的平方和。

反向传播
d w [ l ] = ( f r o m b a c k p r o p ) + λ 2 m w [ l ] dw^{[l]}=(from backprop)+\frac{\lambda}{2m}w^{[l]} dw[l]=(frombackprop)+2mλw[l]

w [ l ] = w [ l ] − α d w [ l ] w^{[l]}=w^{[l]}-\alpha dw^{[l]} w[l]=w[l]αdw[l]

L2正则化被称作权重衰减的原因
w [ l ] = w [ l ] − α [ ( f r o m b a c k p r o p ) + λ 2 m w [ l ] ] w^{[l]}=w^{[l]}-\alpha[(from backprop)+\frac{\lambda}{2m}w^{[l]}] w[l]=w[l]α[(frombackprop)+2mλw[l]]

w [ l ] = w [ l ] − α λ 2 m w [ l ] − α ( f r o m b a c k p r o p ) w^{[l]}=w^{[l]}-\frac{\alpha \lambda}{2m}w^{[l]}-\alpha(frombackprop) w[l]=w[l]2mαλw[l]α(frombackprop)

从上面的式子可以看到,不管w是什么,总是试图使w变得更小。实际上是给w矩阵乘上了小于1的系数 1 − α λ 2 m 1-\frac{\alpha \lambda}{2m} 12mαλ

三、为什么正则化可以防止过拟合?

在这里插入图片描述
直觉经验告诉我们, λ \lambda λ足够大的时候,使得w权重小到0,那么神经网络中的隐藏单元失效(在初始化权重那一课有讲),这样网络结构更趋近于逻辑回归,所以防止了高方差(过拟合)的情况。

在这里插入图片描述
λ \lambda λ足够大的时候,w会变得很小,z同样会变得很小,在激活函数上落在近似线性的部分上。(在激活函数使用非线性那一课中讲到)隐藏层的激活函数是线性的,这个网络就是线性网络,不管网络有多深,实际上起不到更好的训练效果,模型趋近于逻辑回归,不会发生过拟合的情况。

为了调试梯度下降,务必使用新定义的J函数,包含正则化项,否则J可能不会在所有调幅范围内都单调递减。

四、dropout

除了L2正则化方法,还有非常使用的正则化方法——dropout(随机失活)
dropout会遍历网络每一层,并设置消除神经网络中节点的概率。通过前面的内容,一定很容易理解为什么dropout可以防止过拟合了,因为随机扔弃一部分节点后,网络结构变得更小,更趋近线性拟合,过拟合的可能性更小。
在这里插入图片描述

Inverted dropout的实现

keep_prob = 0.8
d3 = np.random.rand(a3.shape[0], a3.shape[1]) < keep_prob
a3 = np.multiply(a3, d3)
a3 /= keep_prob

反向随机失活最后除以keep_prob确保a3的期望值不变。

五、dropout深入理解

在这里插入图片描述

  • 每一层有不同的keep_prob保留值,根据每一层具体情况,参数多容易过拟合应当降低keep_prob的取值
  • 输入层应尽可能接近1,因为是输入的是所需特征
  • 缺点是为了使用交叉验证,需要搜索更多超级参数
  • dropout在计算机视觉CV中应用频繁,维度很大但是数据较少
  • 除非过拟合,我们不应该使用dropout
  • 缺点还有代价函数很难明确定义(要求加入正则化项后J函数单减),通常做法是关闭dropout,将keep_prob设置为1.0后运行代码确保函数递减,再打开dropout函数。

六、其他正则化方法

数据扩增

  • 水平翻转
  • 随意裁剪
    在这里插入图片描述
  • 随意旋转
  • 扭曲数字
    在这里插入图片描述
    Early stopping
    在这里插入图片描述
    考虑两方面:
  • 选择算法优化代价函数J
    • 梯度下降
    • Momentum
    • RMSprop
    • Adam
  • 回避过拟合问题
    • 正则化
    • 扩增数据

提前停止训练不能同时解决如上两个问题。L2正则化通过尝试不同的正则化参数,但是需要承担很大的计算代价,如果不能承受很大的计算代价,early stopping也可以得到相似的结果。

这篇关于深度学习笔记(十六)正则化(L2 dropout 数据扩增 Earlystopping)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/500297

相关文章

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

Redis的数据过期策略和数据淘汰策略

《Redis的数据过期策略和数据淘汰策略》本文主要介绍了Redis的数据过期策略和数据淘汰策略,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录一、数据过期策略1、惰性删除2、定期删除二、数据淘汰策略1、数据淘汰策略概念2、8种数据淘汰策略

轻松上手MYSQL之JSON函数实现高效数据查询与操作

《轻松上手MYSQL之JSON函数实现高效数据查询与操作》:本文主要介绍轻松上手MYSQL之JSON函数实现高效数据查询与操作的相关资料,MySQL提供了多个JSON函数,用于处理和查询JSON数... 目录一、jsON_EXTRACT 提取指定数据二、JSON_UNQUOTE 取消双引号三、JSON_KE

Python给Excel写入数据的四种方法小结

《Python给Excel写入数据的四种方法小结》本文主要介绍了Python给Excel写入数据的四种方法小结,包含openpyxl库、xlsxwriter库、pandas库和win32com库,具有... 目录1. 使用 openpyxl 库2. 使用 xlsxwriter 库3. 使用 pandas 库

SpringBoot定制JSON响应数据的实现

《SpringBoot定制JSON响应数据的实现》本文主要介绍了SpringBoot定制JSON响应数据的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们... 目录前言一、如何使用@jsonView这个注解?二、应用场景三、实战案例注解方式编程方式总结 前言

使用Python在Excel中创建和取消数据分组

《使用Python在Excel中创建和取消数据分组》Excel中的分组是一种通过添加层级结构将相邻行或列组织在一起的功能,当分组完成后,用户可以通过折叠或展开数据组来简化数据视图,这篇博客将介绍如何使... 目录引言使用工具python在Excel中创建行和列分组Python在Excel中创建嵌套分组Pyt

在Rust中要用Struct和Enum组织数据的原因解析

《在Rust中要用Struct和Enum组织数据的原因解析》在Rust中,Struct和Enum是组织数据的核心工具,Struct用于将相关字段封装为单一实体,便于管理和扩展,Enum用于明确定义所有... 目录为什么在Rust中要用Struct和Enum组织数据?一、使用struct组织数据:将相关字段绑

在Mysql环境下对数据进行增删改查的操作方法

《在Mysql环境下对数据进行增删改查的操作方法》本文介绍了在MySQL环境下对数据进行增删改查的基本操作,包括插入数据、修改数据、删除数据、数据查询(基本查询、连接查询、聚合函数查询、子查询)等,并... 目录一、插入数据:二、修改数据:三、删除数据:1、delete from 表名;2、truncate

Java实现Elasticsearch查询当前索引全部数据的完整代码

《Java实现Elasticsearch查询当前索引全部数据的完整代码》:本文主要介绍如何在Java中实现查询Elasticsearch索引中指定条件下的全部数据,通过设置滚动查询参数(scrol... 目录需求背景通常情况Java 实现查询 Elasticsearch 全部数据写在最后需求背景通常情况下