深度学习笔记(十六)正则化(L2 dropout 数据扩增 Earlystopping)

本文主要是介绍深度学习笔记(十六)正则化(L2 dropout 数据扩增 Earlystopping),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

如果训练的模型过拟合,也就是高方差,我们首先想到的是正则化。高方差的解决方法有准备充足的数据,但是有时候我们无法找到足够的数据。下文详细说明正则化方法,包括L2正则化(菲罗贝尼乌斯)、dropout机制、数据扩增、Early stopping。

一、逻辑回归中的正则化

需要求得损失函数 J ( w , b ) J(w,b) J(w,b)的最小值,已知
J ( w , b ) = 1 m ∑ i = 1 m L ( y ^ ( i ) , y ( i ) ) J(w,b)=\frac{1}{m} \sum_{i=1}^m L(\widehat{y}^{(i)},y^{(i)}) J(w,b)=m1i=1mL(y (i),y(i))
在此基础上添加正则化参数 λ \lambda λ
J ( w , b ) = 1 m ∑ i = 1 m L ( y ^ ( i ) , y ( i ) ) + λ 2 m ∣ ∣ w ∣ ∣ 2 2 J(w,b)=\frac{1}{m} \sum_{i=1}^m L(\widehat{y}^{(i)},y^{(i)})+\frac{\lambda}{2m}||w||_2^2 J(w,b)=m1i=1mL(y (i),y(i))+2mλw22
其中 w w w的欧几里得范数的平方等于元素平方和
L 2 r e g u l a r i z a t i o n : ∣ ∣ w ∣ ∣ 2 2 = ∑ j = 1 n x w j 2 = w T w L2 regularization:||w||_2^2=\sum_{j=1}^{n_x} w_j^2=w^Tw L2regularization:w22=j=1nxwj2=wTw
为什么省略b,因为w通常是一个高维参数矢量,已经可以表达高方差的情况,b对参数影响并不显著。
L 1 : λ 2 m ∑ j = 1 n x ∣ w j ∣ = λ 2 m ∣ ∣ w ∣ ∣ 1 L1:\frac{\lambda}{2m} \sum_{j=1}^{n_x}|w_j|=\frac{\lambda}{2m}||w||_1 L1:2mλj=1nxwj=2mλw1
如果用L1正则化,W向量会很稀疏,会有很多0,有人说利于压缩模型,实际上并没有降低很多内存。我们更倾向于L2正则化。顺便说, λ \lambda λ这个参数也是一个超参数,需要尝试哪个取值才是最优取值,为了方便编程,在Python中 λ \lambda λ是保留字段,编程通常写作lambd作为正则化参数变量。

二、神经网络中的L2正则化

J ( w , b ) = 1 m ∑ i = 1 m L ( y ^ ( i ) , y ( i ) ) + λ 2 m ∑ l = 1 L ∣ ∣ w [ l ] ∣ ∣ F 2 J(w,b)=\frac{1}{m} \sum_{i=1}^m L(\widehat{y}^{(i)},y^{(i)})+\frac{\lambda}{2m}\sum_{l=1}^L ||w^{[l]}||_F^2 J(w,b)=m1i=1mL(y (i),y(i))+2mλl=1Lw[l]F2
其中,
∣ ∣ w [ l ] ∣ ∣ F 2 = ∑ i = 1 n [ l − 1 ] ∑ j = 1 n [ 1 ] ( w i j [ l ] ) 2 ||w^{[l]}||_F^2=\sum_{i=1}^{n^{[l-1]}}\sum_{j=1}^{n^{[1]}}(w_{ij}^{[l]})^2 w[l]F2=i=1n[l1]j=1n[1](wij[l])2
L2范数,按照惯例称之为:Frobenius 菲罗贝尼乌斯范数,即矩阵中所有元素的平方和。

反向传播
d w [ l ] = ( f r o m b a c k p r o p ) + λ 2 m w [ l ] dw^{[l]}=(from backprop)+\frac{\lambda}{2m}w^{[l]} dw[l]=(frombackprop)+2mλw[l]

w [ l ] = w [ l ] − α d w [ l ] w^{[l]}=w^{[l]}-\alpha dw^{[l]} w[l]=w[l]αdw[l]

L2正则化被称作权重衰减的原因
w [ l ] = w [ l ] − α [ ( f r o m b a c k p r o p ) + λ 2 m w [ l ] ] w^{[l]}=w^{[l]}-\alpha[(from backprop)+\frac{\lambda}{2m}w^{[l]}] w[l]=w[l]α[(frombackprop)+2mλw[l]]

w [ l ] = w [ l ] − α λ 2 m w [ l ] − α ( f r o m b a c k p r o p ) w^{[l]}=w^{[l]}-\frac{\alpha \lambda}{2m}w^{[l]}-\alpha(frombackprop) w[l]=w[l]2mαλw[l]α(frombackprop)

从上面的式子可以看到,不管w是什么,总是试图使w变得更小。实际上是给w矩阵乘上了小于1的系数 1 − α λ 2 m 1-\frac{\alpha \lambda}{2m} 12mαλ

三、为什么正则化可以防止过拟合?

在这里插入图片描述
直觉经验告诉我们, λ \lambda λ足够大的时候,使得w权重小到0,那么神经网络中的隐藏单元失效(在初始化权重那一课有讲),这样网络结构更趋近于逻辑回归,所以防止了高方差(过拟合)的情况。

在这里插入图片描述
λ \lambda λ足够大的时候,w会变得很小,z同样会变得很小,在激活函数上落在近似线性的部分上。(在激活函数使用非线性那一课中讲到)隐藏层的激活函数是线性的,这个网络就是线性网络,不管网络有多深,实际上起不到更好的训练效果,模型趋近于逻辑回归,不会发生过拟合的情况。

为了调试梯度下降,务必使用新定义的J函数,包含正则化项,否则J可能不会在所有调幅范围内都单调递减。

四、dropout

除了L2正则化方法,还有非常使用的正则化方法——dropout(随机失活)
dropout会遍历网络每一层,并设置消除神经网络中节点的概率。通过前面的内容,一定很容易理解为什么dropout可以防止过拟合了,因为随机扔弃一部分节点后,网络结构变得更小,更趋近线性拟合,过拟合的可能性更小。
在这里插入图片描述

Inverted dropout的实现

keep_prob = 0.8
d3 = np.random.rand(a3.shape[0], a3.shape[1]) < keep_prob
a3 = np.multiply(a3, d3)
a3 /= keep_prob

反向随机失活最后除以keep_prob确保a3的期望值不变。

五、dropout深入理解

在这里插入图片描述

  • 每一层有不同的keep_prob保留值,根据每一层具体情况,参数多容易过拟合应当降低keep_prob的取值
  • 输入层应尽可能接近1,因为是输入的是所需特征
  • 缺点是为了使用交叉验证,需要搜索更多超级参数
  • dropout在计算机视觉CV中应用频繁,维度很大但是数据较少
  • 除非过拟合,我们不应该使用dropout
  • 缺点还有代价函数很难明确定义(要求加入正则化项后J函数单减),通常做法是关闭dropout,将keep_prob设置为1.0后运行代码确保函数递减,再打开dropout函数。

六、其他正则化方法

数据扩增

  • 水平翻转
  • 随意裁剪
    在这里插入图片描述
  • 随意旋转
  • 扭曲数字
    在这里插入图片描述
    Early stopping
    在这里插入图片描述
    考虑两方面:
  • 选择算法优化代价函数J
    • 梯度下降
    • Momentum
    • RMSprop
    • Adam
  • 回避过拟合问题
    • 正则化
    • 扩增数据

提前停止训练不能同时解决如上两个问题。L2正则化通过尝试不同的正则化参数,但是需要承担很大的计算代价,如果不能承受很大的计算代价,early stopping也可以得到相似的结果。

这篇关于深度学习笔记(十六)正则化(L2 dropout 数据扩增 Earlystopping)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/500297

相关文章

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

MySQL大表数据的分区与分库分表的实现

《MySQL大表数据的分区与分库分表的实现》数据库的分区和分库分表是两种常用的技术方案,本文主要介绍了MySQL大表数据的分区与分库分表的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. mysql大表数据的分区1.1 什么是分区?1.2 分区的类型1.3 分区的优点1.4 分

Mysql删除几亿条数据表中的部分数据的方法实现

《Mysql删除几亿条数据表中的部分数据的方法实现》在MySQL中删除一个大表中的数据时,需要特别注意操作的性能和对系统的影响,本文主要介绍了Mysql删除几亿条数据表中的部分数据的方法实现,具有一定... 目录1、需求2、方案1. 使用 DELETE 语句分批删除2. 使用 INPLACE ALTER T

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

Redis 中的热点键和数据倾斜示例详解

《Redis中的热点键和数据倾斜示例详解》热点键是指在Redis中被频繁访问的特定键,这些键由于其高访问频率,可能导致Redis服务器的性能问题,尤其是在高并发场景下,本文给大家介绍Redis中的热... 目录Redis 中的热点键和数据倾斜热点键(Hot Key)定义特点应对策略示例数据倾斜(Data S

Python实现将MySQL中所有表的数据都导出为CSV文件并压缩

《Python实现将MySQL中所有表的数据都导出为CSV文件并压缩》这篇文章主要为大家详细介绍了如何使用Python将MySQL数据库中所有表的数据都导出为CSV文件到一个目录,并压缩为zip文件到... python将mysql数据库中所有表的数据都导出为CSV文件到一个目录,并压缩为zip文件到另一个

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

SpringBoot整合jasypt实现重要数据加密

《SpringBoot整合jasypt实现重要数据加密》Jasypt是一个专注于简化Java加密操作的开源工具,:本文主要介绍详细介绍了如何使用jasypt实现重要数据加密,感兴趣的小伙伴可... 目录jasypt简介 jasypt的优点SpringBoot使用jasypt创建mapper接口配置文件加密