西湖大学利用 Transformer 分析百亿多肽的自组装特性,破解自组装法则

本文主要是介绍西湖大学利用 Transformer 分析百亿多肽的自组装特性,破解自组装法则,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

多肽是两个以上氨基酸通过肽键组成的生物活性物质,可以通过折叠、螺旋形成更高级的蛋白质结构。多肽不仅与多个生理活动相关联,还可以自组装成纳米粒子,参与到生物检测、药物递送、组织工程中。

然而,多肽的序列组成过于多样,仅 10 个氨基酸就可以组成超过百亿种多肽。因此,人们很难对其自组装特性进行全面系统的研究,进而优化自组装多肽的设计。

为此,西湖大学的李文彬课题组利用基于 Transformer 的回归网络,对百亿种多肽的自组装特性进行了预测,并分析得到了不同位置氨基酸对自组装特性的影响,为自组装多肽的研究提供了强力的新工具。

作者 | 雪菜
编辑 | 三羊

多肽是两个以上氨基酸通过肽键组成的生物活性物质。多肽合成便利、可生物降解、生物相容性强,且具有丰富的化学多样性,可以组成具有荧光、半导体导电性或是磁性的纳米物质。正因为此,多肽得到了科研界的广泛关注。

然而,也正是因为多肽的多样性,人们暂缺乏预测其自组装倾向 (AP, Aggregation Propensity) 的方法,很难将其转变为有序结构。目前只有极少的多肽能够自组装,形成满足需求的超分子结构,并投入到工业应用中。

在这里插入图片描述

图 1:不同自组装探针对 hCA、抗生物素和胰蛋白酶的特异性荧光

过去数十年间,自组装多肽主要是通过生物实验发现的。然而,实验往往需要很长的周期,而且存在一定的倾向性,不利于对大量多肽进行全面的系统研究。

近年来,计算筛选 (Computational Screening) 被广泛用于自组装多肽的设计中。2015 年,Frederix 等人利用粗粒度分子动力学 (CGMD) 分析了三肽的 AP。然而,随着氨基酸数量的增加,多肽序列数量会指数级增长,使 CGMD 的成本大幅增加。

因此,有研究者结合 AI 和 CGMD ,以降低传统方法的分析成本。然而,AI-CGMD 需要大量的训练数据。据推测,十肽 (decapeptide) 的序列超过百亿种,需要 320 万个多肽序列数据。基于上述原因,目前尚无对 5 个以上氨基酸组成多肽 (pentapeptide) 的 AP 预测。

为解决这些问题,西湖大学的李文彬课题组利用基于 Transformer 的回归网络 (TRN),结合 CGMD,对百亿种多肽的自组装特性进行了预测,得到了五肽和十肽的 AP,并得到了不同位置的氨基酸对多肽 AP 的影响。这一成果已发表于「Advanced Science」。

在这里插入图片描述

相关成果已发表于「Advanced Science」

论文链接:

https://onlinelibrary.wiley.com/doi/full/10.1002/advs.202301544

实验过程

训练集:拉丁超立方采样

首先,利用拉丁超立方采样筛选出 8,000 个多肽序列。筛选出的多肽序列通过 CGMD 模型分析得到其 AP。

模型构建:编码与解码

研究人员基于 TRN 构建了 AP 预测模型。模型包括 Transformer 编码器和多层感知机 (MLP) 解码器。Transformer 编码器由输入嵌入层 (Input Embedding)、位置编码器 (Positional Encoding) 和编码块 (Encording Block) 组成。

输入嵌入层用于将多肽的组成单元(即氨基酸)映射到 512 维的连续空间中,位置编码器会输出氨基酸的位置信息。编码块包括自注意网络和前馈神经网络。

Transformer 编码器最终输出一个隐藏层表示的多肽序列。这一序列经过 MLP 降维 5 次后,被压缩为一维向量。MLP 解码器的最后一层会输出多肽的 AP。

在这里插入图片描述

图 2:TRN 模型的工作流

a:α-螺旋和 β-折叠的原子模型及 α-螺旋的 CG 模型;

b:通过 CGMD 输出训练数据的流程;

c:TRN 模型示意图。

实验结果

模型预测:提升 54.5%

研究人员对比了 TRN 模型和其他非深度学习模型(支持向量机 SVM、随机森林 RF、临近算法 NN、贝叶斯回归 BR 和线性回归 LR)的 AP 预测表现。

在仅有 8,000 个训练数据时,模型的决定系数 R2 就超过了 0.85,较 SVM 提升了 11.8%,较 RF 提升了 54.5%

在这里插入图片描述

图 3:TRN 模型和其他非深度学习模型的性能对比

随着训练数据的增加,TRN 模型的表现随着增加。 当训练数据达到 54,000 时,TRN 模型的平均绝对误差 (MAE) 为 0.05,R2 为 0.92。

在这里插入图片描述

图 4:训练数据对 TRN 模型性能的影响

上述结果说明,相比非深度学习模型,TRN 模型可以用较少的训练数据达到较高的预测率。同时,随着训练数据的增加,TRN 模型的表现随之提升。

亲水性:APHC 修正

据报道,除 AP 外,多肽的亲水性 (log P) 也会对多肽的自组装产生影响

当 AP 自低向高增长时,log P 的中位数随之降低,说明亲水性强的多肽聚集能力较差。然而,log P 位于 0.25-0.75 之间的多肽 AP 跨度很大,分布在 0-1 之间,说明二者的联系并不密切,还有其他因素会影响多肽的 AP。

在这里插入图片描述

图 5:AP 与 log P 的关系

a:320 万种五肽的 AP 与 log P 的相关性;

b:AP 在不同区间的分布;

c:log P 在不同 AP 区间的分布。

为找出 AP 和 log P 对多肽自组装的影响,研究人员利用 log P 对 AP 进行了修正,得到了 APHC。修正后的 APHC 能够分辨出多肽自组装和沉淀,筛选出可以形成水凝胶的多肽。

在这里插入图片描述

图 6:APHC 与 log P 的关系

a:320 万种五肽的 APHC 与 log P 的相关性;

b:APHC 在不同区间的分布;

c:log P 在不同 APHC 区间的分布。

自组装法则:不同位置的氨基酸影响

在分析了五肽中不同位置的 20 种氨基酸对 APHC 的影响后,研究人员总结得到了不同氨基酸及其分布对多肽自组装特性的影响,并将其分成了 5 组。

第一组氨基酸包括苯丙氨酸 (F)、酪氨酸 (Y) 和色氨酸 (W)。这组氨基酸中存在 π-π 堆叠且疏水性强,对多肽自组装贡献最大。其中 W 的疏水性最强,对 APHC 的影响最大,这与 WWWWW 的观察结果一致。

在这里插入图片描述

图 7:不同 AP 区间中,20 种氨基酸在不同位置的分布比例

F、Y、W 在 3-5 号位,尤其是 3 号位时,对多肽自组装贡献最强。可能是因为在 3 号位上,氨基酸的自由度较高,更易通过 π-π 作用驱动多肽自组装。

在这里插入图片描述

图 8:π-π 堆叠示意图

然而,这些芳香类氨基酸在 5 号位时,是强质子接受体,会与其他多肽相互作用,拉大苯环的距离,削弱分子内的 π-π 作用。

第二组氨基酸包括异亮氨酸 (I)、亮氨酸 (L)、缬氨酸 (V) 和半胱氨酸 ©由于这些氨基酸的侧链和水之间相互排除,疏水性强,对多肽自组装贡献较强。这组氨基酸常分布在多肽的两端,尤其是自组装多肽的 N 端。

在这里插入图片描述

图 9:氨基酸的疏水作用

第三组氨基酸包括组氨酸 (H)、丝氨酸 (S) 和苏氨酸 (T)。这组氨基酸有极化侧链,可以通过氢键提升多肽的自组装能力。然而,氢键的作用相比于 π-π 堆叠较弱,因此在高 APHC 的多肽中,第三组氨基酸含量较少。

T 和 S 倾向于占据多肽的两端,尤其是 N 端,这有利于氢键的形成。而 H 会远离多肽的两端。

在这里插入图片描述

图 10:极性侧链对多肽结构的影响

第四组氨基酸包括蛋氨酸 (M) 和脯氨酸 §M 和 P 在不同 APHC 的多肽中分布基本一致,仅对多肽的特定指标有微弱的影响。

第五组氨基酸不利于多肽的自组装,包括带负电的天冬氨酸 (D) 和谷氨酸 (E)、带正电的赖氨酸 (K) 和精氨酸 ®、强极性的天冬酰胺 (N) 和谷氨酰胺 (Q)、无侧链的丙氨酸 (A) 和甘氨酸 (G)。

然而,C 端的 D 和 E、N 端的 R 和 K 可以形成带双电荷的头基,通过异性电荷相互吸引、形成盐桥促进多肽的自组装。N 和 Q 由于极性太强,会促进多肽的溶解。而 A 和 G 缺乏明显的相互作用,不利于多肽自组装。

在这里插入图片描述

图 11:库仑作用对多肽结构的影响

实验验证:与 CGMD 和 TEM 结果基本一致

为确认 TRN 模型的预测结果,研究人员用 CGMD 对五种多肽的自组装特性进行了验证。CGMD 的计算结果与 TRN 模型的预测结果基本一致。

同时,NRMMR、DMGID、NRMMRDMGID 和 NRMMR + DMGID 的自组装特性还得到了实验的验证。透射电子显微镜 (TEM) 的结果与 CGMD 的结果基本一致。

在这里插入图片描述

图 12:CGMD (a) 和 TEM (b) 观察到的多肽自组装结果

上述结果说明,TRN 模型可以准确预测五肽、十肽和混合五肽的自组装特性,为自组装多肽的研究提供了强力的新工具。

自组装多肽:生物医药新方向

虽然人们对多肽的自组装特性研究还不够深入,但自组装多肽已经广泛用于组织工程、药物递送和生物传感当中。此外,细胞的收缩和舒张、内吞囊泡的移动、细菌和病毒的跨膜传输都离不开多肽的自组装,阿尔兹海默症、帕金森氏病和II型糖尿病等疾病也与蛋白质的错误折叠有关。

在这里插入图片描述

图 13:自组装多肽用于抗肿瘤药物的递送

随着 AI 的发展,科研人员对于大批量数据的处理能力不断增强。生物研究从传统的实验研究,走向计算研究,再走向 AI 研究的同时,研究的规模也从以往的几十上百种可能,逐渐迈向了百亿种。在 AI 的帮助下,人类正在推进生物研究的边界,相信未来人们能对生物有更精细更全面的研究,让 AI + 生物普惠大众。

参考链接:

https://pubs.rsc.org/en/content/articlelanding/2014/CS/C4CS00161C

这篇关于西湖大学利用 Transformer 分析百亿多肽的自组装特性,破解自组装法则的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/497662

相关文章

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实

锐捷和腾达哪个好? 两个品牌路由器对比分析

《锐捷和腾达哪个好?两个品牌路由器对比分析》在选择路由器时,Tenda和锐捷都是备受关注的品牌,各自有独特的产品特点和市场定位,选择哪个品牌的路由器更合适,实际上取决于你的具体需求和使用场景,我们从... 在选购路由器时,锐捷和腾达都是市场上备受关注的品牌,但它们的定位和特点却有所不同。锐捷更偏向企业级和专

Spring中Bean有关NullPointerException异常的原因分析

《Spring中Bean有关NullPointerException异常的原因分析》在Spring中使用@Autowired注解注入的bean不能在静态上下文中访问,否则会导致NullPointerE... 目录Spring中Bean有关NullPointerException异常的原因问题描述解决方案总结

python中的与时间相关的模块应用场景分析

《python中的与时间相关的模块应用场景分析》本文介绍了Python中与时间相关的几个重要模块:`time`、`datetime`、`calendar`、`timeit`、`pytz`和`dateu... 目录1. time 模块2. datetime 模块3. calendar 模块4. timeit

python-nmap实现python利用nmap进行扫描分析

《python-nmap实现python利用nmap进行扫描分析》Nmap是一个非常用的网络/端口扫描工具,如果想将nmap集成进你的工具里,可以使用python-nmap这个python库,它提供了... 目录前言python-nmap的基本使用PortScanner扫描PortScannerAsync异

Oracle数据库执行计划的查看与分析技巧

《Oracle数据库执行计划的查看与分析技巧》在Oracle数据库中,执行计划能够帮助我们深入了解SQL语句在数据库内部的执行细节,进而优化查询性能、提升系统效率,执行计划是Oracle数据库优化器为... 目录一、什么是执行计划二、查看执行计划的方法(一)使用 EXPLAIN PLAN 命令(二)通过 S

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

计算机毕业设计 大学志愿填报系统 Java+SpringBoot+Vue 前后端分离 文档报告 代码讲解 安装调试

🍊作者:计算机编程-吉哥 🍊简介:专业从事JavaWeb程序开发,微信小程序开发,定制化项目、 源码、代码讲解、文档撰写、ppt制作。做自己喜欢的事,生活就是快乐的。 🍊心愿:点赞 👍 收藏 ⭐评论 📝 🍅 文末获取源码联系 👇🏻 精彩专栏推荐订阅 👇🏻 不然下次找不到哟~Java毕业设计项目~热门选题推荐《1000套》 目录 1.技术选型 2.开发工具 3.功能

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者

MOLE 2.5 分析分子通道和孔隙

软件介绍 生物大分子通道和孔隙在生物学中发挥着重要作用,例如在分子识别和酶底物特异性方面。 我们介绍了一种名为 MOLE 2.5 的高级软件工具,该工具旨在分析分子通道和孔隙。 与其他可用软件工具的基准测试表明,MOLE 2.5 相比更快、更强大、功能更丰富。作为一项新功能,MOLE 2.5 可以估算已识别通道的物理化学性质。 软件下载 https://pan.quark.cn/s/57