【视觉SLAM十四讲学习笔记】第四讲——李代数求导与扰动模型

2023-12-15 09:28

本文主要是介绍【视觉SLAM十四讲学习笔记】第四讲——李代数求导与扰动模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

专栏系列文章如下:
【视觉SLAM十四讲学习笔记】第一讲——SLAM介绍
【视觉SLAM十四讲学习笔记】第二讲——初识SLAM
【视觉SLAM十四讲学习笔记】第三讲——旋转矩阵
【视觉SLAM十四讲学习笔记】第三讲——旋转向量和欧拉角
【视觉SLAM十四讲学习笔记】第三讲——四元数
【视觉SLAM十四讲学习笔记】第三讲——Eigen库
【视觉SLAM十四讲学习笔记】第四讲——李群与李代数基础
【视觉SLAM十四讲学习笔记】第四讲——指数映射

BCH公式与近似形式

使用李代数的一大动机是进行优化,而在优化过程中导数是非常重要的信息。虽然我们已经清楚了SO(3)和SE(3)上的李群与李代数关系,但是当在SO(3)中完成两个矩阵乘法时,李代数中so(3)上发生了什么改变呢?反过来说,当so(3)上做两个李代数的加法时,SO(3)上是否对应着两个矩阵的乘积?

如果成立,相当于:
在这里插入图片描述
如果ϕ_1,ϕ_2为标量,那么显然该式成立;但此处我们计算的是矩阵的指数函数,而非标量的指数。换言之,我们在研究下式是否成立:
在这里插入图片描述
很遗憾,该式在矩阵时并不成立。两个李代数指数映射乘积的完整形式,由BCH公式给出。由于其完整形式较复杂,我们只给出其展开式的前几项,其中[ ]为李括号:
在这里插入图片描述
上面的BCH公式告诉我们,当处理两个矩阵指数之积时,它们会产生一些由李括号组成的余项。特别地,考虑SO(3)上的李代数ln(exp(ϕ_1^)exp(ϕ_2 ^))∨,当ϕ_1或ϕ_2为小量时,小量二次以上的项都可以被忽略。此时,BCH拥有线性近似表达:
在这里插入图片描述
以第一个近似为例。该式告诉我们,当对一个旋转矩阵R_2(李代数为ϕ_2)左乘一个微小旋转矩阵R_1(李代数为ϕ_1)时,可以近似地看作,在原有的李代数ϕ_2上加上了一项J_l(ϕ_2)-1ϕ_1。同理,第二个近似描述了右乘一个微小位移的情况。于是,李代数在BCH近似下,分成了左乘近似和右乘近似两种。而右乘雅可比仅需要对自变量取负号即可:
在这里插入图片描述
这样,我们就可以谈论李群乘法和李代数加法的关系了。为了方便理解,我们重新叙述BCH近似的意义。假定对于某个旋转R,对应的李代数为ϕ。我们给他左乘一个微小旋转,记作ΔR,对应的李代数为Δϕ。那么,在李群上,得到的结果就是ΔR·R,而在李代数上,根据BCH近似,为J_l-1(ϕ) Δϕ+ϕ。合并起来,可以简单地写成:
在这里插入图片描述
反之,如果我们在李代数上进行加法,让一个ϕ加上Δϕ,那么可以近似为李群上带左右雅可比的乘法:
在这里插入图片描述
这就为之后李代数上做微积分提供了理论基础。同样地,对于SE(3),也有类似的BCH近似:
在这里插入图片描述

SO(3)上的李代数求导

在SLAM中,要估计一个相机的位置和姿态,该位姿是由SO(3)上的旋转矩阵或SE(3)上的变换矩阵描述的。设某个时刻机器人的位姿为T,它观察到了一个世界坐标位于p的点,产生了一个观测数据z。由坐标变换关系知:
在这里插入图片描述
其中w为随机噪声。由于它的存在,z 往往不可能精确地满足z=Tp的关系。所以通常会计算理想的观测与实际数据的误差:
在这里插入图片描述假设一共有N个这样的路标点和观测,于是就有N个上式。那么,对机器人的位姿估计,相当于是寻找一个最优的T,使得整体误差最小化:
在这里插入图片描述
求解此问题,需要计算目标函数J关于变换矩阵T的导数。重点是构建与位姿有关的函数,讨论该函数关于位姿的导数,以调整当前的估计值。然而SO(3),SE(3)上并没有良好定义的加法,它们是群。如果把T当成一个普通矩阵来处理优化,那就必须对它加以约束(旋转矩阵的约束是行列式值唯一,计算复杂)。而从李代数角度来说,由于李代数由向量组成,具有良好的加法运算。

因此,使用李代数解决求导问题的思路分为两种:

  1. 用李代数表示姿态,然后根据李代数加法来对李代数求导

  2. 对李群左乘右乘微小扰动,然后对该扰动求导,称为左扰动和右扰动模型。

第一种方式对应到李代数的求导模型,而第二种则对应到扰动模型。

李代数求导

首先,考虑SO(3)上的情况。假设对一个空间点p进行了旋转,得到了Rp。计算旋转之后点的坐标相对于旋转的导数,我们非正式地记为 :
在这里插入图片描述
由于SO(3)没有加法,所以该导数无法按照导数的定义进行计算。设R对应的李代数为ϕ,转而计算:
在这里插入图片描述
按照导数的定义,推导出了旋转后的点相对于李代数的导数:
在这里插入图片描述
不过,由于这里仍然含有形式比较复杂的雅可比式,我们不太希望计算它。而下面的扰动模型则提供了更简单的导数计算方式。

扰动模型(左乘)

另一种求导方式是对R进行一次扰动ΔR,看结果相对于扰动的变化率。这个扰动可以乘在左边也可以乘在右边,最后结果会有一点微小的差异,我们以左扰动为例。设左扰动ΔR对应的李代数为φ。然后对φ求导,即:
在这里插入图片描述
相比于直接对李代数求导,省去了一个雅可比矩阵的计算。这使得扰动模型更为实用,在位姿估计当中具有重要的意义。

SE(3)上的李代数求导

最后,我们给出SE(3)上的扰动模型,而直接李代数上的求导就不再介绍了。假设某空间点p经过一次变换T(对应李代数为ξ),得到TP

现在,给T左乘一个扰动∆T = exp(δξ∧),设扰动项的李代数为 δξ = [δρϕ]T,那么:
在这里插入图片描述
我们把最后的结果定义成一个算符,它把一个齐次坐标的空间点变换成一个4×6的矩阵。

这篇关于【视觉SLAM十四讲学习笔记】第四讲——李代数求导与扰动模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/495955

相关文章

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首

如何在本地部署 DeepSeek Janus Pro 文生图大模型

《如何在本地部署DeepSeekJanusPro文生图大模型》DeepSeekJanusPro模型在本地成功部署,支持图片理解和文生图功能,通过Gradio界面进行交互,展示了其强大的多模态处... 目录什么是 Janus Pro1. 安装 conda2. 创建 python 虚拟环境3. 克隆 janus

本地私有化部署DeepSeek模型的详细教程

《本地私有化部署DeepSeek模型的详细教程》DeepSeek模型是一种强大的语言模型,本地私有化部署可以让用户在自己的环境中安全、高效地使用该模型,避免数据传输到外部带来的安全风险,同时也能根据自... 目录一、引言二、环境准备(一)硬件要求(二)软件要求(三)创建虚拟环境三、安装依赖库四、获取 Dee

DeepSeek模型本地部署的详细教程

《DeepSeek模型本地部署的详细教程》DeepSeek作为一款开源且性能强大的大语言模型,提供了灵活的本地部署方案,让用户能够在本地环境中高效运行模型,同时保护数据隐私,在本地成功部署DeepSe... 目录一、环境准备(一)硬件需求(二)软件依赖二、安装Ollama三、下载并部署DeepSeek模型选

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert