基于轻量级GhostNet模型开发构建工业生产制造场景下滚珠丝杠传动表面缺陷图像识别系统

本文主要是介绍基于轻量级GhostNet模型开发构建工业生产制造场景下滚珠丝杠传动表面缺陷图像识别系统,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

轻量级识别模型在我们前面的博文中已经有过很多实践了,感兴趣的话可以自行移步阅读:

《移动端轻量级模型开发谁更胜一筹,efficientnet、mobilenetv2、mobilenetv3、ghostnet、mnasnet、shufflenetv2驾驶危险行为识别模型对比开发测试》

《基于Pytorch框架的轻量级卷积神经网络垃圾分类识别系统》

《基于轻量级卷积神经网络模型实践Fruits360果蔬识别——自主构建CNN模型、轻量化改造设计lenet、alexnet、vgg16、vgg19和mobilenet共六种CNN模型实验对比分析》

《探索轻量级模型性能上限,基于GhostNet模型开发构建多商品细粒度图像识别系统》

《基于轻量级神经网络GhostNet开发构建的200种鸟类细粒度识别分析系统》

《基于MobileNet的轻量级卷积神经网络实现玉米螟虫不同阶段识别分析》

《python开发构建轻量级卷积神经网络模型实现手写甲骨文识别系统》

《基于轻量级模型GHoshNet开发构建眼球眼疾识别分析系统,构建全方位多层次参数对比分析实验》

《python基于轻量级卷积神经网络模型ShuffleNetv2开发构建辣椒病虫害图像识别系统》

《基于轻量级神经网络GhostNet开发构建光伏太阳能电池缺陷图像识别分析系统》

本文的核心思想是像基于GhostNet来开发构建工业生产制造场景下的滚珠丝杠传动表面缺陷图像识别系统,首先看下实例效果:

GhostNet 是一种轻量级卷积神经网络,是专门为移动设备上的应用而设计的。其主要构件是 Ghost 模块,一种新颖的即插即用模块。Ghost 模块设计的初衷是使用更少的参数来生成更多特征图 (generate more features by using fewer parameters)。

官方论文地址在这里,如下所示:

官方也开源了项目,地址在这里,如下所示:

可以详细阅读官方的代码实例即可,之后可以基于自己的数据集来开发构建模型即可。

这里给出GhostNet的核心实现部分,如下所示:

class GhostNet(nn.Module):def __init__(self, cfgs, num_classes=1000, width_mult=1.0):super(GhostNet, self).__init__()self.cfgs = cfgsoutput_channel = _make_divisible(16 * width_mult, 4)layers = [nn.Sequential(nn.Conv2d(3, output_channel, 3, 2, 1, bias=False),nn.BatchNorm2d(output_channel),nn.ReLU(inplace=True),)]input_channel = output_channelblock = GhostBottleneckfor k, exp_size, c, use_se, s in self.cfgs:output_channel = _make_divisible(c * width_mult, 4)hidden_channel = _make_divisible(exp_size * width_mult, 4)layers.append(block(input_channel, hidden_channel, output_channel, k, s, use_se))input_channel = output_channelself.features = nn.Sequential(*layers)output_channel = _make_divisible(exp_size * width_mult, 4)self.squeeze = nn.Sequential(nn.Conv2d(input_channel, output_channel, 1, 1, 0, bias=False),nn.BatchNorm2d(output_channel),nn.ReLU(inplace=True),nn.AdaptiveAvgPool2d((1, 1)),)input_channel = output_channeloutput_channel = 1280self.classifier = nn.Sequential(nn.Linear(input_channel, output_channel, bias=False),nn.BatchNorm1d(output_channel),nn.ReLU(inplace=True),nn.Dropout(0.2),nn.Linear(output_channel, num_classes),)self._initialize_weights()def forward(self, x, need_fea=False):if need_fea:features, features_fc = self.forward_features(x, need_fea)x = self.classifier(features_fc)return features, features_fc, xelse:x = self.forward_features(x)x = self.classifier(x)return xdef forward_features(self, x, need_fea=False):if need_fea:input_size = x.size(2)scale = [4, 8, 16, 32]features = [None, None, None, None]for idx, layer in enumerate(self.features):x = layer(x)if input_size // x.size(2) in scale:features[scale.index(input_size // x.size(2))] = xx = self.squeeze(x)return features, x.view(x.size(0), -1)else:x = self.features(x)x = self.squeeze(x)return x.view(x.size(0), -1)def _initialize_weights(self):for m in self.modules():if isinstance(m, nn.Conv2d):nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")elif isinstance(m, nn.BatchNorm2d):m.weight.data.fill_(1)m.bias.data.zero_()def cam_layer(self):return self.features[-1]

简单看下数据集情况:

数据集分布可视化如下所示:

基于tsne算法实现了分布的可视化,可以清楚地看到:两类数据区分度还是很明显的。

整体模型训练识别的难度也是相对较低的,接下来看下loss走势:

acc曲线:

可以看到:模型的精度非常高了。

基于常用的数据增强算法来实现对原始图像数据的增强处理效果实例如下所示:

混淆矩阵如下:

项目的开发实践是一个不断优化和收获的过程,感兴趣的话都可以参与进来!

 

这篇关于基于轻量级GhostNet模型开发构建工业生产制造场景下滚珠丝杠传动表面缺陷图像识别系统的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/495284

相关文章

使用Python开发一个带EPUB转换功能的Markdown编辑器

《使用Python开发一个带EPUB转换功能的Markdown编辑器》Markdown因其简单易用和强大的格式支持,成为了写作者、开发者及内容创作者的首选格式,本文将通过Python开发一个Markd... 目录应用概览代码结构与核心组件1. 初始化与布局 (__init__)2. 工具栏 (setup_t

SpringBoot应用中出现的Full GC问题的场景与解决

《SpringBoot应用中出现的FullGC问题的场景与解决》这篇文章主要为大家详细介绍了SpringBoot应用中出现的FullGC问题的场景与解决方法,文中的示例代码讲解详细,感兴趣的小伙伴可... 目录Full GC的原理与触发条件原理触发条件对Spring Boot应用的影响示例代码优化建议结论F

SpringBoot条件注解核心作用与使用场景详解

《SpringBoot条件注解核心作用与使用场景详解》SpringBoot的条件注解为开发者提供了强大的动态配置能力,理解其原理和适用场景是构建灵活、可扩展应用的关键,本文将系统梳理所有常用的条件注... 目录引言一、条件注解的核心机制二、SpringBoot内置条件注解详解1、@ConditionalOn

Spring Shell 命令行实现交互式Shell应用开发

《SpringShell命令行实现交互式Shell应用开发》本文主要介绍了SpringShell命令行实现交互式Shell应用开发,能够帮助开发者快速构建功能丰富的命令行应用程序,具有一定的参考价... 目录引言一、Spring Shell概述二、创建命令类三、命令参数处理四、命令分组与帮助系统五、自定义S

Python 迭代器和生成器概念及场景分析

《Python迭代器和生成器概念及场景分析》yield是Python中实现惰性计算和协程的核心工具,结合send()、throw()、close()等方法,能够构建高效、灵活的数据流和控制流模型,这... 目录迭代器的介绍自定义迭代器省略的迭代器生产器的介绍yield的普通用法yield的高级用法yidle

利用Python快速搭建Markdown笔记发布系统

《利用Python快速搭建Markdown笔记发布系统》这篇文章主要为大家详细介绍了使用Python生态的成熟工具,在30分钟内搭建一个支持Markdown渲染、分类标签、全文搜索的私有化知识发布系统... 目录引言:为什么要自建知识博客一、技术选型:极简主义开发栈二、系统架构设计三、核心代码实现(分步解析

C++ Sort函数使用场景分析

《C++Sort函数使用场景分析》sort函数是algorithm库下的一个函数,sort函数是不稳定的,即大小相同的元素在排序后相对顺序可能发生改变,如果某些场景需要保持相同元素间的相对顺序,可使... 目录C++ Sort函数详解一、sort函数调用的两种方式二、sort函数使用场景三、sort函数排序

Python通过模块化开发优化代码的技巧分享

《Python通过模块化开发优化代码的技巧分享》模块化开发就是把代码拆成一个个“零件”,该封装封装,该拆分拆分,下面小编就来和大家简单聊聊python如何用模块化开发进行代码优化吧... 目录什么是模块化开发如何拆分代码改进版:拆分成模块让模块更强大:使用 __init__.py你一定会遇到的问题模www.

Spring Security基于数据库的ABAC属性权限模型实战开发教程

《SpringSecurity基于数据库的ABAC属性权限模型实战开发教程》:本文主要介绍SpringSecurity基于数据库的ABAC属性权限模型实战开发教程,本文给大家介绍的非常详细,对大... 目录1. 前言2. 权限决策依据RBACABAC综合对比3. 数据库表结构说明4. 实战开始5. MyBA

使用Python自建轻量级的HTTP调试工具

《使用Python自建轻量级的HTTP调试工具》这篇文章主要为大家详细介绍了如何使用Python自建一个轻量级的HTTP调试工具,文中的示例代码讲解详细,感兴趣的小伙伴可以参考一下... 目录一、为什么需要自建工具二、核心功能设计三、技术选型四、分步实现五、进阶优化技巧六、使用示例七、性能对比八、扩展方向建