FlowNet到FlowNet2.0:基于卷积神经网络的光流预测算法

2023-12-15 00:58

本文主要是介绍FlowNet到FlowNet2.0:基于卷积神经网络的光流预测算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

其它机器学习、深度学习算法的全面系统讲解可以阅读《机器学习-原理、算法与应用》,清华大学出版社,雷明著,由SIGAI公众号作者倾力打造。

  • 书的购买链接
  • 书的勘误,优化,源代码资源

原创声明:本文为 SIGAI 原创文章,仅供个人学习使用,未经允许,不能用于商业目的。 

 

导言

光流预测一直都是计算机视觉中的经典问题,同时又是解决很多其他问题的基础而备受关注,例如,运动估计、运动分割和行为识别。随着深度神经网络技术在计算机视觉领域中引发的技术变革,基于深度神经网络的光流预测算法应运而生。本文中,SIGAI将以FlowNet到FlowNet2.0的演变,来和大家一起领略基于CNN(卷积神经网络)的光流算法的诞生与发展。

光流(optical flow)是指平面上,光照模式的变化情况。在计算机视觉领域,是指视频图像中各点像素随时间的运动情况。光流具有丰富的运动信息,因而在运动估计、自动驾驶和行为识别方面都有广泛应用。光流预测通常是从一对时间相关的图像对中,估计出第一张图像中各个像素点在相邻图像中的位置。

光流问题长久以来,主要被基于变分能量模型的优化算法和基于块匹配的启发式算法统治着。随着深度神经网络技术在计算机视觉领域取得的成功,科学家们开始尝试利用深度学习技术的优势去解决光流问题。

 

FlowNet:新技术的诞生

随着CNN在图像分割、深度预测和边缘预测方面的成功,研究人员思考,同样是每个像素点都要给出预测结果的光流预测问题能否也利用CNN进行预测呢?

FlowNet[1]是第一个尝试利用CNN去直接预测光流的工作,它将光流预测问题建模为一个有监督的深度学习问题。模型框架如下:

图1源自[1]

如图1输入端为待求光流的图像对I_1,I_2,输出端为预测的光流W。

W=CNN(θ,I_1,I_2)

其中 W,I_1,I_2均为x,y的函数,x,y为图像中像素的位置坐标。θ为CNN中待学习的参数。通过调节θ,来使网络具有光流预测的能力。

那么问题来了,什么样的网络结构具有光流预测能力呢?

FlowNet[1]中提出了两种可行的网络结构.

网络整体上为编码模块接解码模块结构,编码模块均为9层卷积加ReLU激活函数层,解码模块均为4层反卷积加ReLU激活函数层,在文中解码模块又被称为细化模块。整个网络结构类似于FCN(全卷机网络),由卷积和反卷积层构成,没有全连接层,因此理论上对输入图像的大小没有要求。

根据输入方式的不同,FlowNet又分为FlowNetSimple和FlowNetCorr。

编码模块(如图2):

图2源自[1]

FlowNetS(FlowNetSimple) 直接将两张图像按通道维重叠后输入。

FlowNetC (FlowNetCorr)为了提升网络的匹配性能,人为模仿标准的匹配过程,设计出“互相关层”,即先提取特征,再计算特征的相关性。相关性的计算实际上可以看做是两张图像的特征在空间维做卷积运算。

解码模块(如图3):

图3源自[1]

在解码细化的过程中,对每层的反卷积ReLU层,不仅输入前一层的输出,同时还输入前一层预测的低尺度的光流和对应编码模块中的特征层。这样使得每一层反卷积层在细化时,不仅可以获得深层的抽象信息,同时还可以获得浅层的具象信息,以弥补因特征空间尺度的缩小而损失的信息。

现在另一个问题来了,是否有足够的数据去训练网络呢?

为了训练网络,我们需要大量的具有光流真值的数据。而目前已知的具有光流真值的数据库规模都太小,即使利用数据增加的技术也相差甚远。另外,要获得真实世界中,自然图片的准确光流往往更是

这篇关于FlowNet到FlowNet2.0:基于卷积神经网络的光流预测算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/494526

相关文章

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖